Key Points• IKZF1 deletions are predictive of an unfavorable outcome in childhood BCR-ABL1-positive ALL.• Good-risk BCR-ABL1-positive patients with wild-type IKZF1 have good outcomes when treated with imatinib.Childhood BCR-ABL1-positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has an unfavorable outcome and shows high frequency of IKZF1 deletions. The prognostic value of IKZF1 deletions was evaluated in 2 cohorts of BCR-ABL1-positive BCP-ALL patients, before tyrosine kinase inhibitors (pre-TKI) and after introduction of imatinib (in the European Study for Philadelphia-Acute Lymphoblastic Leukemia [EsPhALL]). In 126/191 (66%) cases an IKZF1 deletion was detected. In the pre-TKI cohort, IKZF1-deleted patients had an unfavorable outcome compared with wild-type patients (4-year disease-free survival [DFS] of 30.0 6 6.8% vs 57.5 6 9.4%; P 5 .01). In the EsPhALL cohort, the IKZF1 deletions were associated with an unfavorable prognosis in patients stratified in the good-risk arm based on early clinical response (4-year DFS of 51.9 6 8.8% for IKZF1-deleted vs 78.6 6 13.9% for IKZF1 wild-type; P 5 .03), even when treated with imatinib (4-year DFS of 55.5 6 9.5% for IKZF1-deleted vs 75.0 6 21.7% for IKZF1 wildtype; P 5 .05). In conclusion, the highly unfavorable outcome for childhood BCR-ABL1-positive BCP-ALL with IKZF1 deletions, irrespective of imatinib exposure, underscores the need for alternative therapies. In contrast, good-risk patients with IKZF1 wild-type responded remarkably well to imatinib-containing regimens, providing a rationale to potentially avoid hematopoietic stem-cell transplantation in this subset of patients. (Blood. 2014;123(11):1691-1698
Background: Rubinstein-Taybi Syndrome (RSTS, MIM 180849) is a rare congenital disorder characterized by mental and growth retardation, broad and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms and increased risk of tumors. RSTS is caused by chromosomal rearrangements and point mutations in one copy of the CREB-binding protein gene (CREBBP or CBP) in 16p13.3. To date mutations in CREBBP have been reported in 56.6% of RSTS patients and an average figure of 10% has ascribed to deletions.
Background RubinsteineTaybi syndrome (RSTS) is a congenital neurodevelopmental disorder defined by postnatal growth deficiency, characteristic skeletal abnormalities and mental retardation and caused by mutations in the genes encoding for the transcriptional co-activators with intrinsic lysine acetyltransferase (KAT) activity CBP and p300. Previous studies have shown that neuronal histone acetylation is reduced in mouse models of RSTS. Methods The authors identified different mutations at the CREBBP locus and generated lymphoblastoid cell lines derived from nine patients with RSTS carrying distinct CREBBP mutations that illustrate different grades of the clinical severity in the spectrum of the syndrome. They next assessed whether histone acetylation levels were altered in these cell lines. Results The comparison of CREBBP-mutated RSTS cell lines with cell lines derived from patients with an unrelated mental retardation syndrome or healthy controls revealed significant deficits in histone acetylation, affecting primarily histone H2B and histone H2A. The most severe defects were observed in the lines carrying the whole deletion of the CREBBP gene and the truncating mutation, both leading to a haploinsufficiency state. Interestingly, this deficit was rescued by treatment with an inhibitor of histone deacetylases (HDACi). Conclusions The authors' results extend to humans the seminal observations in RSTS mouse models and point to histone acetylation defects, mainly involving H2B and H2A, as relevant molecular markers of the disease.
Rubinstein-Taybi syndrome (RSTS) is a rare malformation disorder caused by mutations in the closely related CREBBP and EP300 genes, accounting respectively for up to 60 and 3% of cases. About 10% of CREBBP mutations are whole gene deletions often extending into flanking regions. Using FISH and microsatellite analyses as a first step in the CREBBP mutation screening of 42 Italian RSTS patients, we identified six deletions, three of which were in a mosaic condition that has not been previously reported in RSTS. The use of region-specific BAC clones and small CREBBP probes allowed us to assess the extent of all of the deletions by mapping their endpoints to genomic intervals of 5-10 kb. Four of our five intragenic breakpoints cluster at the 5' end of CREBBP, where there is a peak of breakpoints underlying rearrangements in RSTS patients and tumors. The search for genomic motifs did not reveal any low-copy repeats (LCRs) or any greater density of repetitive sequences. In contrast, the percentage of interspersed repetitive elements (mainly Alu and LINEs in the CREBBP exon 2 region) is significantly higher than that in the entire gene or the average in the genome, thus suggesting that this characteristic may be involved in the region's vulnerability to breaking and nonhomologous pairing. The FISH analysis extended to the EP300 genomic region did not reveal any deletions. The clinical presentation was typical in all cases, but more severe in the three patients carrying constitutional deletions, raising a question about the possible underdiagnosis of a few cases of mild RSTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.