BACKGROUND Secondary effluent wastewaters still contain resources including water and nutrients that must be safely reused and recovered. In this study, the combined role of microalgae as disinfectant and nutrient removal agent was evaluated for the potential application of a microalgae‐based process as a cost‐effective tertiary treatment. Nutrient removal, biomass productivity and disinfection performances were monitored in laboratory‐scale photobioreactors (batch and continuous) fed on a secondary effluent mixed with a 10% on influent collected at a large municipal wastewater treatment plant where tertiary disinfection is performed by UV treatment. RESULTS In microalgae‐based batch disinfection tests, Escherichia coli counts (0.5 ± 0.7 log CFU 100 mL−1) were comparable to those after traditional UV process (0.7 ± 0.84 log CFU 100 mL−1) and lower than in tests where light was applied without microalgae. In the following continuous test, E. coli counts were reduced by one order of magnitude and the pathogenic strain of E. coli O157:H7/H−, Salmonella spp. and indicators such as Bacteroides spp. and Enterococcus spp. were never detectable in the effluents by molecular tools. Total nitrogen and phosphorus removals reached 93 and 100%, respectively, while the algal biomass productivity of the system averaged 50 ± 30 mg TSS L−1 day−1. CONCLUSIONS The effluents of the photobioreactors reached quality standards appropriate for water reuse. Moreover, nutrients could be recovered through the generation of algal biomass suitable for further valorization. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
The city of Zhangye (Gansu Region, China) has been subjected to several changes related to the development of new profitable human activities. Unfortunately, this growth has led to a general decrease in water quality due to the release of several toxic wastes and pollutants (e.g., heavy metals) into the Heihe River. In order to assess the environmental exposure and the potential threat to human health, microbiological diversity for the monitoring of water pollution by biotic and abiotic impact factors was investigated. In particular, we analysed samples collected on different sites using 454 pyrotag sequencing of the 16S ribosomal genes. Then, we focused on alpha-diversity indices to test the hypothesis that communities featuring lower diversity show higher resistance to the disturbance events. The findings report that a wide range of environmental factors such as pH, nutrients and chemicals (heavy metals (HMs)), affected microbial diversity by stimulating mutualistic relationships among bacteria. Furthermore, a selection in bacterial taxa related to the different concentrations of polluting compounds was highlighted. Supporting the hypothesis, our investigation highlights the importance of microbial communities as sentinels for ecological status diagnosis.
According to the World Health Organization, the two major public health threats in the twenty-first century are antibiotic-resistant bacteria and antibiotic-resistant genes. The reason for the global prevalence and the constant increase of antibiotic-resistant bacteria is owed to the steady rise in overall antimicrobial consumption in several medical, domestic, agricultural, industrial, and veterinary applications, with consequent environmental release. These antibiotic residues may directly contaminate terrestrial and aquatic environments in which antibiotic-resistance genes are also present. Reports suggest that metal contamination is one of the main drivers of antimicrobial resistance (AMR). Moreover, the abundance of antibiotic-resistance genes is directly connected to the predominance of metal concentrations in the environment. In addition, microplastics have become a threat as emerging contaminants because of their ubiquitous presence, bio-inertness, toughness, danger to aquatic life, and human health implications. In the environment, microplastics and AMR are interconnected through biofilms, where genetic information (e.g., ARGs) is horizontally transferred between bacteria. From this perspective, we tried to summarize what is currently known on this topic and to propose a more effective One Health policy to tackle these threats.
The source of antibiotic residuals can be directly related to the presence of municipal or industrial wastewater and agricultural activities. Antibiotics can trigger the dissemination of antibiotic resistance genes within bacterial communities. The mobile genetic elements Class 1 integrons (intl1 region) has been already found to be correlated with a wide range of pollutants (i.e., antibiotics, heavy metals), and hence, it has been proposed as a proxy for environmental health. This study aimed to assess the presence of intl1 in different environmental matrices, including agricultural and forest soils, freshwater and unpolluted sediments in the upper Adige River catchment (N Italy), in order to identify the spread of pollutants. Intl1 was detected by direct PCR amplification at different frequencies. The urban and agricultural areas revealed the presence of intl1, except for apple orchards, where it was below the detection limit. Interestingly, intl1 was found in a presumed unpolluted environment (glacier moraine), maybe because of the high concentration of metal ions in the mineral soil. Finally, intl1 was absent in forest fresh-leaf litter samples and occurred with low rates in soil. Our results provide new data in supporting the use of intl1 to detect the environmental health of different land-use systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.