X-linked Kallmann's syndrome (KS) is a genetic disease characterized by anosmia and hypogonadism due to impairment in the development of olfactory axons and in the migration of gonadotropin-releasing hormone (GnRH)-producing neurons. Deletions or point mutations of a gene located at Xp22.3 (KAL1) are responsible for the disease. This gene encodes for a secreted heparin-binding protein (KAL or anosmin-1) which exhibits similarities with cell-adhesion molecules. In the present study, we show for the first time a direct action of anosmin-1 on the migratory activity of GnRH neurons. Specifically, we exposed immortalized migrating GnRH neurons (GN11 cells) to conditioned media (CM) of COS or CHO cells transiently transfected with human KAL1 gene in microchemotaxis and collagen gel assays. We found that anosmin-1-enriched media produced a cell-specific chemotactic response of GN11 cells. None of the CM enriched on three forms of anosmin-1 carrying different missense mutations (N267K, E514K and F517L) found in patients affected by X-linked KS affected the chemomigration of GN11 cells. Anosmin binds to the GN11 cell surface by interacting with the heparan sulphate proteoglycans, and the chemotactic effect of anosmin-1-enriched CM can be specifically blocked by heparin or by heparitinase pretreatment. These results strongly suggest an involvement of anosmin-1 in the control of the migratory behaviour of GnRH neurons and provide novel information on the pathogenesis of KS.
Transmissible prion diseases are fatal neurodegenerative diseases associated with the conversion of the normal host prion protein (PrP c) into an abnormal isoform (PrP Sc) that accumulates in brain. This pathology affects neurons of the central nervous system whereas no clear toxic effect has been reported for peripheral neurons. We examined the subcellular distribution of PrP c and PrP Sc in the scrapie-infected mouse neuronal cell lines GT1-7 and N2a, derived, respectively, from the central and peripheral nervous system. We observed that in both cell types, PrP c is present in the endocytic compartment, mainly in LAMP-1-positive late endosomes, but excluded from LYAAT-1-lysosomes. In contrast, PrP Sc was distributed differently in the two cell lines. In infected N2a, PrP Sc and PrP c had comparable distribution patterns. In infected GT1-7, PrP Sc is present in an additional vesicular compartment which is flotillin-1-positive. The level of expression of flotillin-1 is higher in GT1-7 than in N2a cells, but no difference is observed between infected and noninfected cells. In Alzheimer's disease patients, it has been reported that flotillin-1 is abundant in brain areas containing the beta-amyloid protein, which accumulates in endosomal vesicles in primary neurons. We propose that the flotillin compartment could store aggregated proteins and play a role in these neurodegenerative pathologies.
Cytokines are known to influence neuronal functions. The purpose of this study was to investigate the putative role of the cytokine interleukin-6 (IL-6) in the pathways involved in opioid-mediated responses, by using IL-6-deficient mice. We reported that with a thermal stimulus IL-6-knock-out (IL-6KO) mice presented nociceptive thresholds similar to those measured in their controls. However, they showed a reduced analgesic response both to the restraint stress and to the administration of low doses of morphine. Hypothalamic levels of the opioid peptide beta-endorphin were significantly higher in IL-6KO mice than they were in their controls. The development of tolerance to the analgesic effect of morphine was more rapid in IL-6-deficient mice than in wild-type controls. Binding experiments showed that the number of opioid receptors in the midbrain, but not in the hypothalamus, decreased in IL-6KO mice. Autoradiographic binding analysis revealed that the density of mu receptors diminished while the delta-opioid receptors did not. These results suggest that IL-6 is necessary for a correct development of neuronal mechanisms involved in the response to both endogenous and exogenous opiates.
In this report we studied and compared the biochemical and the electrophysiological characteristics of two cell lines (GT1-7 and GN11) of immortalized mouse LHRH-expressing neurons and the correlation with their maturational stage and migratory activity. In fact, previous results indicated that GN11, but not GT1-7, cells exhibit an elevated motility in vitro. The results show that the two cell lines differ in terms of immunoreactivity for tyrosine hydroxylase and nestin as well as of production and release of 3,4-dihydroxyphenylalanine (DOPA) and of intracellular distribution and release of the LHRH. Patch-clamp recordings in GN11 cells, reveal the presence of a single inward rectifier K+ current indicative of an immature neuronal phenotype (neither firing nor electrical activity). In contrast, as known from previous studies, GT1-7 cells show the characteristics of mature LHRH neurons with a high electrical activity characterized by spontaneous firing and excitatory postsynaptic potentials. K+-induced depolarization induces in GT1-7 cells, but not in GN11 cells, a strong increase in the release of LHRH in the culture medium. However, depolarization of GN11 cells significantly decreases their chemomigratory response. In conclusion, these results indicate that GT1-7 and GN11 cells show different biochemical and electrophysiological characteristics and are representative of mature and immature LHRH neurons, respectively. The early stage of maturation of GN11 cells, as well as the low electrical activity detected in these cells, appears to correlate with their migratory activity in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.