Azopolymers are known to exhibit a strong light responsivity known as athermal photofluidization. Although the underlying physics is still under debate, athermal photofluidization has been demonstrated to trigger mass-migration according to the polarization of a proper illumination light. Here, a polymer blend is proposed wherein a commercial azo-polyelectrolyte is mixed with a passive polymer. The blend is patterned as an array of micro-pillars that are individually exposed to visible laser illumination. Thanks to the interplay between the two blend components, a reversible and controlled deformation of the micro-pillars by periodically tuning the laser polarization in time is demonstrated. A reduced mobility of the azo-compound allows to repeatibly elongate and rotate micro-pillars along specific directions, with no significant material flow outisde the initial volume and no significant degradation of the structure morphology over several cycles. The proposed work suggests new degrees of freedom in controlling the mechanical features of micro-patterned light-responsive materials that can be usefully exploited in many application fields.
The light-induced deformation of a micro-textured photo-sensitive polymeric material is exploited for modifying the surface hydrophobicity along deterministic directions. Arrays of azopolymeric micro-pillars are fabricated over large area and irradiated with a green laser. Upon laser irradiation, the micro-pillars deform reversibly along a direction parallel to the laser polarization, resulting in elongated shapes with controllable eccentricity. Such a locally anisotropic topography induces a directional yet reversible change of hydrophobicity, as measured by contact angles varying within a range of 30°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.