The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Pentraxin-3 (PTX3) belongs to the pentraxine family, innate immune regulators involved in angiogenesis, proliferation and immune escape in cancer. Here, we evaluated PTX3 tissue expression and serum levels as biomarkers of clear cell renal cell carcinoma (ccRCC) and analyzed the possible role of complement system activation on tumor site. A 10-year retrospective cohort study including patients undergoing nephrectomy for ccRCC was also performed. PTX3 expression was elevated in both neoplastic renal cell lines and tissues, while it was absent in both normal renal proximal tubular cells (HK2) and normal renal tissues. Analysis of complement system activation on tumor tissues showed the co-expression of PTX3 with C1q, C3aR, C5R1 and CD59, but not with C5b-9 terminal complex. RCC patients showed higher serum PTX3 levels as compared to non-neoplastic patients (p<0.0001). Higher PTX3 serum levels were observed in patients with higher Fuhrman grade (p<0.01), lymph node (p<0.0001), and visceral metastases (p<0.001). Patients with higher PTX3 levels also showed significantly lower survival rates (p=0.002). Our results suggest that expression of PTX3 can affect the immunoflogosis in the ccRCC microenvironment, by activating the classical pathway of CS (C1q) and releasing pro-angiogenic factors (C3a, C5a). The up-regulation of CD59 also inhibits the complementmediated cellular lysis.
Adult renal progenitor cells (ARPCs) isolated from the human kidney may contribute to repair featuring acute kidney injury (AKI). Bone morphogenetic proteins (BMPs) regulate differentiation, modeling, and regeneration processes in several tissues. The aim of this study was to evaluate the biological actions of BMP-2 in ARPCs in vitro and in vivo. BMP-2 was expressed in ARPCs of normal adult human kidneys, and it was upregulated in vivo after delayed graft function (DGF) of renal transplantation, a condition of AKI. ARPCs expressed BMP receptors, suggesting their potential responsiveness to BMP-2. Incubation of ARPCs with this growth factor enhanced reactive oxygen species (ROS) production, NADPH oxidase activity, and Nox4 protein expression. In vivo, Nox4 was localized in BMP-2-expressing CD133+ cells at the tubular level after DGF. BMP-2 incubation induced α-smooth muscle actin (SMA), collagen I, and fibronectin protein expression in ARPCs. Moreover, α-SMA colocalized with CD133 in vivo after DGF. The oxidative stimulus (H2O2) induced α-SMA expression in ARPCs, while the antioxidant N-acetyl-cysteine inhibited BMP-2-induced α-SMA expression. Nox4 silencing abolished BMP-2-induced NADPH oxidase activation and myofibroblastic induction. We showed that 1) ARPCs express BMP-2, 2) this expression is increased in a model of AKI; 3) BMP-2 may induce the commitment of ARPCs toward a myofibroblastic phenotype in vitro and in vivo; and 4) this profibrotic effect is mediated by Nox4 activation. Our findings suggest a novel mechanism linking AKI with progressive renal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.