We modelled thermo-rheological perturbations, related to the emplacement of a magmatic body in the upper crust. This approach was considered relevant for the areas characterized by elevated surface heat flow and chiefly for the geothermal fields. The numerical conductive thermal model applied to the Larderello geothermal area in Tuscany, allowed to constrain size, depth and timing of emplacement of the pluton. We inferred that the emplacement of a magmatic body, at a minimum depth of 3 km, having a horizontal extension of 14 km and a maximum thickness of 8 km, can reasonably reproduce the observed regional surface heat flow anomaly of the Larderello area, when 300 (± 100) kyr are elapsed from the magma emplacement. Even assuming an incremental growth, the first magma injection should not be older than 1 ± 0.3 Ma.Results of the thermal model were used to set up a rheological model and to simulate the drifting of the brittle-ductile transition during the cooling of the pluton. A comparison with the K-horizon profile, a prominent seismic reflector in the Larderello area, was then performed. It was found that the K-horizon approximately corresponds with the pluton roof and with the current location of the brittle-ductile transition.ARTICLE HISTORY
Summary We investigate the presence of seismic structures in the Earth's mantle by searching for seismic signals that travel off the great circle path direction and are reflected or scattered off structures in the lower mantle. We focus on areas of current and past subduction beneath Eurasia by using events from Indonesia and Japan recorded at the broadband stations in Germany, Morocco and Namibia. Applying seismic array techniques, we measure the direction and traveltime of the out-of-plane arrivals and backtrace them to their location of reflection/scattering. We backtrace the signals as P-to-P and S-to-P waves and extend the methodology to P-to-S waves. There seems to be a low number of reflection points in the regions beneath Eurasia in our study. Investigating possible causes, we find that the focal mechanism influences the presence of out-of-plane reflected waves. However, the potential coverage with our dataset is large and should allow detection, but there may potentially be few seismically visible structures in the region. Most of our backtraced reflectors are located beneath southern Asia and are found shallower than 1500 km depth. They correlate well with the edges of prominent high velocity anomalies in tomographic inversions beneath southern Asia, which have been interpreted as remnants of fossil slabs of the subduction of the Tethys Oceans. We also observe few reflectors deeper than 1600 km that are located away from subducting regions and their positions coincide with the eastern edge of the African low velocity anomaly. These observations suggest that the presence of reflectors in the mid-lower mantle is not exclusively related to current or past subducting regions, but widespread throughout the mantle.
The SS precursor signals are a powerful tool for mapping topography of mantle discontinuities, which are sensitive to the thermal and compositional structure of the mantle. The depth of mantle discontinuities is usually estimated using the differential travel time between the main arrival and its precursor. However, this method ignores potential travel path deviations that influence the travel time of precursor signals. Here, we use an approach that considers directivity information as well as travel-time measurements. Applying seismic array techniques, we measure slowness, back azimuth, and travel time of the signals, and use this information to backproject to the point of reflection. In our test dataset, we observe deviations from the predicted values in slowness and back azimuth in the range of 0.1–2.3 s/° and 1–20°, respectively. These values lead to reflection locations that can differ considerably from theoretical reflection points calculated with great circle plane paths as well as depths different from the depth calculated for in-plane propagation, with differences up to ∼150 km. Our results indicate that the travel-path deviations should be considered to avoid misinterpretation of mantle discontinuities and potentially reduce previously observed scatter in discontinuity depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.