Bacteria, meio-and macrofauna were investigated at different depths in a coastal area of the Central Adriatic Sea, yielding information about the composition and abundance of the benthic community. In particular, 14 nematode genera were recorded for the first time in the Upper Adriatic Sea. All communities resulted as being significantly different between inshore and offshore stations, especially when the season interaction was considered. Sediment grain size seemed to be the main natural variable, along with trophic resources, affecting the distribution and composition of these benthic components, whilst there was no clear evidence of competition for food sources and predatory pressure between the communities. Meiofauna appeared the most useful community for detecting disturbances and river influences. In particular, the lowest copepod abundance in the shallow waters seemed to be related to a greater anthropogenic disturbance inshore, whilst meiofaunal abundance and diversity together with the nematode maturity index suggest the influence of the Foglia and Metauro rivers and the small stream Arzilla.
The Maldivian archipelago comprises some of the most characteristic and significant world atoll systems, but the meiobenthic assemblages of these islands continue to be largely unknown. To investigate variations in meiofaunal spatial distribution and biodiversity in back‐reef platforms, three transects were studied, two at Felidhoo (the north and east sides) and one at South Malé. The sedimentological features of the samples obtained were also analyzed to further current knowledge on the relationships that exist between sediments and meiofauna. Our results reveal that the meiofaunal assemblage at these locations is well diversified and includes 20 major taxa. Nematodes and copepods are dominant, together forming 68% of the total meiofauna, followed by platyhelminthes, polychaetes and ostracods. The nematode assemblage is very rich and composed of 34 families and 123 genera – 96 of which (78%) set new records for the Maldives. The structures of the meiofaunal and nematode assemblages are relatively similar on the ‘large‐scale’ level (i.e. when the different platforms are compared) and reveal a low β‐diversity. However, significant dissimilarities were detected within each platform, emphasizing that such ‘small‐scale’ differences are the main factors determining the structure of the meiofauna and, in particular, the nematode assemblages. Although significant differences were not detected between the transects, greater levels of dissimilarity were recognized at North Felidhoo. Here, the building of inclined deposit layers plays a significant role in increasing the heterogeneity of the platform habitats and sediments, confirming the great importance of sediment granulometry as an environmental variable. Indeed, a close relationship is observed between meiofauna (especially for the nematodes) and grain size, which appears to control the structure, diversity and trophic composition of the Maldivian meiofauna assemblages, thus highlighting the high biodiversity existing in the medium‐coarse sands.
Owing to technical problems and difficult taxonomic identification, meiofauna have been generally less studied than macrofauna. However, the role of meiofauna in marine ecosystem functioning, and their effective and rapid response to anthropogenic alterations and climatic changes have recently been acknowledged, leading to increasing scientific and applied interest. At present, systematic and biogeographic knowledge of the meiofauna of the Adriatic Sea is extremely heterogeneous, because most of the data are limited to a few taxa and the sampled areas are scattered, being located mainly in the coastal areas of the northern basin. Analysis of the composition and distribution of meiobenthic groups in the Adriatic Sea highlights the presence of several endemisms. Meiofauna also include bioindicator taxa, which allow assessment of the quality of marine sediments; this is particularly useful in systems characterised by the synergistic effect of different forms of anthropogenic impact, such as the Adriatic basin. Current knowledge about the ecology of the meiofauna and use of this component in applied ecological studies, along with the availability of a standardised protocol for the analysis of meiofaunal assemblages, allows us to recommend formal acknowledgement of the need to integrate information derived from the analysis of macrofauna with information derived from the study of meiofauna. Future research based on the simultaneous use of both of these benthic components will allow faster and more accurate evaluation of the response of coastal marine ecosystems to anthropogenic disturbanc
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.