PurposeTo compare the detection rate (DR) and bilateral optimal mapping (OM) of sentinel lymph nodes (SLNs) in women with endometrial and cervical cancer using indocyanine green (ICG) versus the standard technetium-99m radiocolloid (99mTc) radiotracer plus methylene or isosulfan blue, or blue dye alone.MethodsFrom October 2010 to May 2015, 163 women with stage I endometrial or cervical cancer (118 endometrial and 45 cervical cancer) underwent SLN mapping with 99mTc with blue dye, blue dye alone, or ICG. DR and bilateral OM of ICG were compared respectively with the results obtained using the standard 99mTc radiotracer with blue dye, or blue dye alone.ResultsSLN mapping with 99mTc radiotracer with blue dye was performed on 77 of 163 women, 38 with blue dye only and 48 with ICG. The overall DR of SLN mapping was 97, 89, and 100 % for 99mTc with blue dye, blue dye alone, and ICG, respectively. The bilateral OM rate for ICG was 85 %—significantly higher than the 58 % obtained with 99mTc with blue dye (p = 0.003) and the 54 % for blue dye (p = 0.001). Thirty-one women (19 %) had positive SLNs. Sensitivity and negative predictive value of SLN were 100 % for all techniques.ConclusionsSLNs mapping using ICG demonstrated higher DR compared to other modalities. In addition, ICG was significantly superior to 99mTc with blue dye in terms of bilateral OM in women with early stage endometrial and cervical cancer. The higher number of bilateral OM may consequently reduce the overall number of complete lymphadenectomies, reducing the duration and additional costs of surgical treatment.
The majority of patients with stage III-IV epithelial ovarian cancer (EOC) relapse after initially responding to platinum-based chemotherapy, and develop resistance. The genomic features involved in drug resistance are unknown. To unravel some of these features, we investigated the mutational profile of genes involved in pathways related to drug sensitivity in a cohort of matched tumors obtained at first surgery (Ft-S) and second surgery (Sd-S).Patients and methods: Matched biopsies (33) taken at Ft-S and Sd-S were selected from the 'Pandora' tumor tissue collection. DNA libraries for 65 genes were generated using the TruSeq Custom Amplicon kit and sequenced on MiSeq (Illumina). Data were analyzed using a high-performance cluster computing platform (Cloud4CARE project) and independently validated.Results: A total of 2270 somatic mutations were identified (89.85% base substitutions 8.19% indels, and 1.92% unknown). Homologous recombination (HR) genes and TP53 were mutated in the majority of Ft-S, while ATM, ATR, TOP2A and TOP2B were mutated in the entire dataset. Only 2% of mutations were conserved between matched Ft-S and Sd-S. Mutations detected at second surgery clustered patients in two groups characterized by different mutational profiles in genes associated with HR, PI3K, miRNA biogenesis and signal transduction.
Conclusions:There was a low level of concordance between Ft-S and Sd-S in terms of mutations in genes involved in key processes of tumor growth and drug resistance. This result suggests the importance of future longitudinal analyses to improve the clinical management of relapsed EOC.
Circulating HPV DNA has been previously described in women with advanced stages of cervical cancer and has been suggested to be a prognostic marker of disease recurrences and metastases. Only a few studies have reported the presence of HPV DNA in bloodstream of patients with low grade or precancerous cervical lesions. This study aimed to define if HPV DNA could be detected in plasma samples of 120 women referred for a recent history of cervical dysplasia who presented with lesions ranging from High Squamous Intraepithelial Lesion (H-SIL) to regressed normal cytology. HPV DNA detection was carried out in both plasma and cervical samples using type-specific real-time quantitative PCR assays identifying oncogenic HPV 16, 18, 31, 33, 45, 51 and 52.Overall, 34.2% (41/120) of plasma samples were shown to be positive for HPV DNA detection; HPV 45 (46.3%), HPV-51 (29.6%), and HPV 16 (18.5%) were the most frequently identified genotypes. The rate of HPV detection in paired cervical and plasma samples increased with advancing disease stage, ranging from 15.4% in women with regressed lesions to 38.9% in women with HSIL; HPV 16 resulted the most common genotype identified in women found to be HPV DNA positive in both cervical and plasma samples. Moreover, HPV 16 showed the highest median viral load value in both cervical and plasma samples, with 48,313 copies/104 cells and 1,099 copies/ml, respectively.Results obtained in this study confirm that HPV DNA can be detected and quantified in plasma samples of women with asymptomatic cervical infection. Further knowledge on HPV dissemination through the blood stream of women with cervical lesions would be very important in better understanding the natural history of HPV infection as well as its potential role in other distant tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.