Bacterial resistance to antimicrobials is considered a major issue worldwide. This condition may account for treatment failure of urinary tract infections, which are among the most common infections both in community and healthcare settings. Therapy against uropathogens is generally administered empirically, possibly leading to unsuccessful therapy, recurrence and development of antibiotic resistance. The reduction in analytical time to obtain antimicrobial susceptibility test (AST) results could play a key role in reducing the cost of healthcare, providing information about antibiotic efficacy and thus preventing from either exploiting new and expensive antibiotics unnecessarily or using obsolete and ineffective ones. A more rational choice among treatment options would hence lead to more effective treatment and faster resolution. In this paper we evaluated the performance of a new Point Of Care Test (POCT) for the rapid prediction of antimicrobial susceptibility in urine samples performed without the need of a laboratory or specialized technicians. 349 patients were enrolled in two open-label, monocentric, non-interventional clinical trials in partnership with an Emergency Medicine ward and the Day Hospital of two large healthcare facilities in Rome. Antibiogram was carried out on 97 patients. Results from analysis of urine samples with the POCT were compared with those from routine AST performed on culture-positive samples, displaying high accuracy (>90%) for all tested antimicrobial drugs and yielding reliable results in less than 12 hours from urine collection thus reducing analytical and management costs.
The use of disinfection agents in the washing processing of ready-to-eat (RTE) vegetables, especially sodium hypochlorite, is a common industrial practice performed to enhance microbiological quality. However, some studies have reported a restart of bacterial growth and a substantial increase in bacterial load during early storage associated with the use of disinfection agents, which might represent a risk for consumers. We evaluated the effect of sodium hypochlorite on bacterial growth trends during the shelf-life in Lactuca sativa, simulating the industrial procedures for RTE vegetable packaging. Immediately after sodium hypochlorite treatment, an effective abatement of the bacterial load was observed, followed by a restart of growth throughout storage. After 5 days, the bacterial load was close to that reached by the control samples, indicating that the net increase in bacterial load was significantly higher in the treated samples. This might be ascribed to the reduction in competitive microflora and/or to the induction of adaptive responses by resting bacteria, which might select disinfectant-resistant bacteria. These findings elicit some concerns about the actual duration of the shelf-life; products might decrease their microbiological quality earlier during storage, pointing out the need to better clarify the impact of sodium hypochlorite as a sanitizer to closer consider its use in RTE vegetable processing. Furthermore, due to the importance of the rapid estimation of bacterial load and the early detection of foodborne pathogens throughout the food chain, the accuracy of the rapid bacteria detection method, the Micro Biological Survey (MBS), and its effectiveness for microbiological analyses of RTE vegetables were evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.