The mass media plays a fundamental role in the formation of public opinion, either by defining the topics of discussion or by making an emphasis on certain issues. Directly or indirectly, people get informed by consuming news from the media. Naturally, two questions appear: What are the dynamics of the agenda and how the people become interested in their different topics? These questions cannot be answered without proper quantitative measures of agenda dynamics and public attention. In this work we study the agenda of newspapers in comparison with public interests by performing topic detection over the news. We define Media Agenda as the distribution of topic's coverage by the newspapers and Public Agenda as the distribution of public interest in the same topic space. We measure agenda diversity as a function of time using the Shannon entropy and differences between agendas using the Jensen-Shannon distance. We found that the Public Agenda is less diverse than the Media Agenda, especially when there is a very attractive topic and the audience naturally focuses only on this one. Using the same methodology we detect coverage bias in newspapers. Finally, it was possible to identify a complex agenda-setting dynamics within a given topic where the least sold newspaper triggered a public debate via a positive feedback mechanism with social networks discussions which install the issue in the Media Agenda.
A key question of collective social behavior is related to the influence of mass media on public opinion. Different approaches have been developed to address quantitatively this issue, ranging from field experiments to mathematical models. In this work we propose a combination of tools involving natural language processing and time series analysis. We compare selected features of mass media news articles with measurable manifestation of public opinion. We apply our analysis to news articles belonging to the 2016 US presidential campaign. We compare variations in polls (as a proxy of public opinion) with changes in the connotation of the news (sentiment) or in the agenda (topics) of a selected group of media outlets. Our results suggest that the sentiment content by itself is not enough to understand the differences in polls, but the combination of topics coverage and sentiment content provides an useful insight of the context in which public opinion varies. The methodology employed in this work is far general and can be easily extended to other topics of interest.
Charge transport via the electron-hopping mechanism was studied in redox-active films of mesoporous silica infiltrated by oligomeric and molecular viologens.
The formation of majorities in public discussions often depends on individuals who shift their opinion over time. The detection and characterization of these type of individuals is therefore extremely important for political analysis of social networks. In this paper, we study changes in individual's affiliations on Twitter using natural language processing techniques and graph machine learning algorithms. In particular, we collected 9 million Twitter messages from 1.5 million users and constructed the retweet networks. We identified communities with explicit political orientation and topics of discussion associated to them which provide the topological representation of the political map on Twitter in the analyzed periods. With that data, we present a machine learning framework for social media users classification which efficiently detects "shifting users" (i.e. users that may change their affiliation over time). Moreover, this machine learning framework allows us to identify not only which topics are more persuasive (using low dimensional topic embedding), but also which individuals are more likely to change their affiliation given their topological properties in a Twitter graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.