Background: Although the influence of titanium implants’ micro-surface properties on titanium discs has been extensively investigated, the research has not taken into consideration their whole-body effect, which may be considered possible using a combinatorial approach. Methods: Five titanium dental implants with a similar moderate roughness and different surface textures were thoroughly characterized. The cell adhesion and proliferation were assessed after adipose-tissue-derived stem cells (ADSCs) were seeded on whole-body implants. The implants’ inductive properties were assessed by evaluating the osteoblastic gene expression. Results: The surface micro-topography was analyzed, showing that hydroxyapatite (HA)-blasted and bland acid etching implants had the highest roughness and a lower number of surface particles. Cell adhesion was observed after 24 h on all the implants, with the highest score registered for the HA-blasted and bland acid etching implants. Cell proliferation was observed only on the laser-treated and double-acid-etched surfaces. The ADSCs expressed collagen type I, osteonectin, and alkaline phosphatase on all the implant surfaces, with high levels on the HA-treated surfaces, which also triggered osteocalcin expression on day seven. Conclusions: The findings of this study show that the morphology and treatment of whole titanium dental implants, primarily HA-treated and bland acid etching implants, impact the adherence and activity of ADSCs in osteogenic differentiation in the absence of specific osteo-inductive signals.
Background: Individuals with pathologic conditions and restorative deficiencies might benefit from a combinatorial approach encompassing stem cells and dental implants; however, due to the various surface textures and coatings, the influence of titanium dental implants on cells exhibits extensive, wide variations. Three-dimensional (3D) cultures of stem cells on whole dental implants are superior in testing implant properties and were used to examine their capabilities thoroughly. Materials and methods: The surface micro-topography of five titanium dental implants manufactured by sandblasting with titanium, aluminum, corundum, or laser sintered and laser machined was compared in this study. After characterization, including particle size distribution and roughness, the adhesion, proliferation, and viability of adipose-derived stem cells (ADSCs) cultured on the whole-body implants were tested at three time points (one to seven days). Finally, the capacity of the implant to induce ADSCs’ spontaneous osteoblastic differentiation was examined at the same time points, assessing the gene expression of collagen type 1 (coll-I), osteonectin (osn), alkaline phosphatase (alp), and osteocalcin (osc). Results: Laser-treated (Laser Mach and Laser Sint) implants exhibited the highest adhesion degree; however, limited proliferation was observed, except for Laser Sint implants, while viability differences were seen throughout the three time points, except for Ti Blast implants. Sandblasted surfaces (Al Blast, Cor Blast, and Ti Blast) outpaced the laser-treated ones, inducing higher amounts of coll-I, osn, and alp, but not osc. Among the sandblasted surfaces, Ti Blast showed moderate roughness and the highest superficial texture density, favoring the most significant spontaneous differentiation relative to all the other implant surfaces. Conclusions: The results indicate that 3D cultures of stem cells on whole-body titanium dental implants is a practical and physiologically appropriate way to test the biological characteristics of the implants, revealing peculiar differences in ADSCs’ adhesion, proliferation, and activity toward osteogenic commitment in the absence of specific osteoinductive cues. In addition, the 3D method would allow researchers to test various implant surfaces more thoroughly. Integrating with preconditioned stem cells would inspire a more substantial combinatorial approach to promote a quicker recovery for patients with restorative impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.