The observed prevalences of thyroid nodules and thyroid cancer in our JAT case series were 31.5% and 3.0%, respectively. Papillary carcinoma was the only histotype detected. The finding of lymphadenopathy, a lack of response to levothyroxine therapy, and nodule hypoechogenicity suggested malignancy. Fine-needle aspiration biopsy was reliable in selecting patients for referral to surgery.
BackgroundThis paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia. Individuals, with hypermethioninemia due to one of the MAT1A mutations that in heterozygotes cause relatively mild and clinically benign hypermethioninemia are currently often being flagged in screening programs measuring methionine elevation to identify newborns with defective cystathionine β-synthase activity. Homozygotes or compound heterozygotes for MAT1A mutations are less frequent. Some but not all, such individuals have manifested demyelination or other CNS abnormalities.Purpose of the studyThe goals of the present effort have been to determine the frequency of such abnormalities, to find how best to predict whether they will occur, and to evaluate the outcomes of the variety of treatment regimens that have been used. Data have been gathered for 64 patients, of whom 32 have some evidence of CNS abnormalities (based mainly on MRI findings), and 32 do not have such evidence.Results and DiscussionThe results show that mean plasma methionine concentrations provide the best indication of the group into which a given patient will fall: those with means of 800 μM or higher usually have evidence of CNS abnormalities, whereas those with lower means usually do not. Data are reported for individual patients for MAT1A genotypes, plasma methionine, total homocysteine (tHcy), and AdoMet concentrations, liver function studies, results of 15 pregnancies, and the outcomes of dietary methionine restriction and/or AdoMet supplementation. Possible pathophysiological mechanisms that might contribute to CNS damage are discussed, and tentative suggestions are put forth as to optimal management.
In a retrospective study we evaluated long-term growth, pubertal developmental patterns to final height (FH), and medication in 55 patients (35 females) affected by 21-hydroxylase deficiency. The patients were classified into 3 groups according to predicted mutation severity: group A (11 women and 9 men), homozygous or compound heterozygous for null or In2 splice mutations [residual enzymatic activity (RA), <1%]; group B (11 women and 4 men), homozygous for I172N or R341P or R426H mutations (RA, approximately 2-3%) or compound heterozygous with any of the group A or B mutations; and group C (13 women and 7 men), homozygous for P30L or V281L or P453S mutations (RA, >30%) or compound heterozygous with any of the group A, B, or C mutations. Three patients showed unclassifiable genotypes. FH was similar in the female groups, whereas male patients in group B were shorter than males in groups A and C. Fifty-five percent of patients in group A, 33% in group B, and 40% in group C reached an FH within 0.5 SD of target height. Four of the 7 patients diagnosed via neonatal screening achieved an FH equal to or above the target height. In the entire group, early diagnosis (<1 yr) improved height outcome. Early diagnosed CAH patients who received lower cortisol equivalent doses during the first year of life reached a better FH. Our results underline the importance of mineralocorticoid therapy, as CAH subjects in groups A and B who did not receive this treatment showed reduced FH. Early diagnosis, the use of more physiological cortisol equivalent dosages during the first year of life, and the extension of mineralocorticoid therapy to all classical patients are shown to improve the auxological outcome. Genotypic analysis helped to interpret the height results of our cases and prospectively may represent a useful tool for improving the therapeutic choice and the height outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.