In this paper we introduce a general-purpose software tool for discrete event system specification (DEVS) modeling and simulation oriented to the simulation of hybrid systems. The environment, called PowerDEVS, allows atomic DEVS models to be defined in Cþþ language that can then be coupled graphically in hierarchical block diagrams to create more complex systems. The environment automatically translates the graphically coupled models into a Cþþ code which executes the simulation. A remarkable feature of PowerDEVS is the possibility to perform simulations under a real-time operating system (RTAI) synchronizing with a real-time clock, which permits the design and automatic implementation of synchronous and asynchronous digital controllers. Combined with its continuous system simulation library, PowerDEVS is also an efficient tool for real-time simulation of physical systems. Another feature is the interconnection between PowerDEVS and the numerical package Scilab. PowerDEVS simulations can make use of Scilab workspace variables and functions, and the results can be sent back to Scilab for further processing and data analysis. In addition to describing the main features of the software tool, the article also illustrates its use with some examples which show its simplicity and efficiency.
In this paper, we introduce a novel parallelization technique for Discrete Event System Specification (DEVS) simulation of continuous and hybrid systems. Here, like in most parallel discrete event simulation methodologies, the models are first split into several sub-models which are then concurrently simulated on different processors. In order to avoid the cost of the global synchronization of all processes, the simulation time of each sub-model is locally synchronized in a real-time fashion with a scaled version of physical time, which implicitly synchronizes all sub-models. The new methodology, coined Scaled Real-Time Synchronization (SRTS), does not ensure a perfect synchronization in its implementation. However, under certain conditions, the synchronization error introduced only provokes bounded numerical errors in the simulation results. SRTS uses the same physical time-scaling parameter throughout the entire simulation. We also developed an adaptive version of the methodology (Adaptive-SRTS) where this parameter automatically evolves during the simulation according to the workload. We implemented the SRTS and Adaptive-SRTS techniques in PowerDEVS, a DEVS simulation tool, under a real-time operating system called the Real-Time Application Interface. We tested their performance by simulating three large-scale models, obtaining in all cases a considerable speedup.
This article describes an extension of the OpenModelica Compiler that translates regular Modelica models into a simpler language, called Micro-Modelica (µ-Modelica), that can be understood by the recently developed stand-alone Quantized State Systems (QSS) solvers. These solvers are very efficient when simulating systems with frequent discontinuities. Thus, strongly discontinuous Modelica models can be simulated noticeably faster than with the standard discrete time solvers.The simulation of two discontinuous models is analyzed in order to demonstrate the correctness of the proposed implementation as well as the advantages of using the QSS stand-alone solvers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.