Single adatoms are expected to participate in many processes occurring at solid surfaces, such as the growth of graphene on metals. We demonstrate, both experimentally and theoretically, the catalytic role played by single metal adatoms during the technologically relevant process of graphene growth on nickel (Ni). The catalytic action of individual Ni atoms at the edges of a growing graphene flake was directly captured by scanning tunneling microscopy imaging at the millisecond time scale, while force field molecular dynamics and density functional theory calculations rationalize the experimental observations. Our results unveil the mechanism governing the activity of a single-atom catalyst at work.
Through a combined scanning tunneling microscopy (STM) and density functional theory (DFT) approach, we provide a full characterization of the different chemisorbed configurations of epitaxial graphene coexisting on the Ni(111) single crystal surface. Top-fcc, top-hcp, and top-bridge are found to be stable structures with comparable adsorption energy. By comparison of experiments and simulations, we solve an existing debate, unambiguously distinguishing these configurations in high-resolution STM images and characterizing the transitions between adjacent domains. Such transitions, described in detail through atomistic models, occur not only via sharp domain boundaries, with extended defects, but predominantly via smooth in-plane distortions of the carbon network, without disruption of the hexagonal rings, which are expected not to significantly affect electron transport.
The layered oxide Na 2 Zn 2 TeO 6 is a fast Na + ion conductor and a suitable candidate for application as a solid-state electrolyte. We present a detailed study on how synthesis temperature and Na-content affect the crystal structure and thus the Na + ion conductivity of Na 2 Zn 2 TeO 6 . Furthermore, we report for the first time an O′3-type phase for Na 2 Zn 2 TeO 6 . At a synthesis temperature of 900 °C, we obtain a pure P2-type phase, providing peak performance in Na + ion conductivity. Synthesis temperatures lower than 900 °C produce a series of mixed P2 and O′3-type phases. The O′3 structure can only be obtained as a pure phase by substituting Li on the Zn-sites to increase the Na-content. Thorough analysis of synchrotron data combined with computational modeling indicates that Li enters the Zn sites and, consequently, the amount of Na in the structure increases to balance the charge according to the formula Na 2+ x Zn 2– x Li x TeO 6 ( x = 0.2–0.5). Impedance spectroscopy and computational modeling confirm that reducing the amount of the O′3-type phase enhances the Na + ion mobility.
Sodium orthosilicates NaMSiO (M = Mn, Fe, Co and Ni) have attracted much attention due to the possibility of exchanging two electrons per formula unit. They are also found to exhibit great structural stability due to a diamond-like arrangement of tetrahedral groups. In this work, we have systematically studied the possible polymorphism of these compounds by means of density functional theory, optimising the structure of a number of systems with different group symmetries. The ground state is found to be Pc-symmetric for all the considered M = Mn, Fe, Co, Ni, and several similar structures exhibiting different symmetries coexist within a 0.3 eV energy window from this structural minimum. The intercalation/deintercalation potential is calculated for varying transition metal atoms M. Iron sodium orthosilicates, attractive due to the natural abundance of both materials, exhibit a low voltage, which can be enhanced by doping with nickel. The diffusion pathways for Na atoms are discussed, and the relevant barriers are calculated using the nudged elastic band method on top of DFT calculations. Also in this case, nickel impurities would improve the material performances by lowering the barrier heights. Notably, the ionic conductivity is found to be systematically larger with respect to the case of lithium orthosilicates, due to a larger spacing between atomic layers and to the non-directional bonding between Na and the neighbouring atoms. Overall, the great structural stability of the material together with the low barriers for Na diffusion indicates this class of materials as good candidates for modern battery technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.