Aberrant Wnt activation has been reported in failing cardiomyocytes. Here we present single cell transcriptome profiling of hearts with inducible cardiomyocyte-specific Wnt activation (β-catΔex3) as well as with compensatory and failing hypertrophic remodeling. We show that functional enrichment analysis points to an involvement of extracellular vesicles (EVs) related processes in hearts of β-catΔex3 mice. A proteomic analysis of in vivo cardiac derived EVs from β-catΔex3 hearts has identified differentially enriched proteins involving 20 S proteasome constitutes, protein quality control (PQC), chaperones and associated cardiac proteins including α-Crystallin B (CRYAB) and sarcomeric components. The hypertrophic model confirms that cardiomyocytes reacted with an acute early transcriptional upregulation of exosome biogenesis processes and chaperones transcripts including CRYAB, which is ameliorated in advanced remodeling. Finally, human induced pluripotent stem cells (iPSC)-derived cardiomyocytes subjected to pharmacological Wnt activation recapitulated the increased expression of exosomal markers, CRYAB accumulation and increased PQC signaling. These findings reveal that secretion of EVs with a proteostasis signature contributes to early patho-physiological adaptation of cardiomyocytes, which may serve as a read-out of disease progression and can be used for monitoring cellular remodeling in vivo with a possible diagnostic and prognostic role in the future.
Over the last few years, the interest in extracellular vesicles (EVs) function has exponentially grown. However, methods for isolating these small vesicles from tissue are still not trivial. Few protocols that allow EV isolation from whole tissue samples, including the heart, are available and they are based on organ perfusion unsing Langendorff method. In this work, aiming at analysing in vivo biology of small EVs, we implemented a simple method to obtain enrichment of these vesicles from murine heart tissue. We tested a titration of Liberase for tissue digestion, which was subjected to differential ultracentrifugation combined with iodixanol cushion and presented the step-by-step procedure of this protocol. Validation was done with Nanoparticle Tracking Analysis, transmission Electron Microscope and Western Blot analysis of EV markers and organelle contaminants. Furthermore, we tested the suitability of the protocol for isolating EVs from heart tissue obtained from a pre-clinical translational non-human primate animal model. Therefore, this protocol should be suitable for isolating vesicle from human heart tissue. Additionally, this method could potentially be applied beyond heart tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.