Using a tight-binding atomistic simulation, we simulate the recent atomic-force microscopy experiments probing the slipperiness of graphene flakes made slide against a graphite surface. Compared to previous theoretical models, where the flake was assumed to be geometrically perfect and rigid, while the substrate is represented by a static periodic potential, our fully-atomistic model includes quantum mechanics with the chemistry of bond breaking and bond formation, and the flexibility of the flake. These realistic features, include in particular the crucial role of the flake rotation in determining the static friction, in qualitative agreement with experimental observations.
We simulate numerically the free expansion of a repulsive Bose-Einstein condensate with an initially Gaussian density profile. We find a self-similar expansion only for weak interatomic repulsion. In contrast, for strong repulsion we observe the spontaneous formation of a shock wave at the surface followed by a significant depletion inside the cloud. In the expansion, contrary to the case of a classical viscous gas, the quantum fluid can generate radial rarefaction density waves with several minima and maxima. These intriguing nonlinear effects, never observed in free-expansion experiments with ultracold alkali-metal atoms, can be detected with the available setups
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.