Armillaria genus represents one of the most common causes of chronic root rot disease in woody plants. Prompt recognition of diseased plants is crucial to control the pathogen. However, the current disease detection methods are limited at a field scale. Therefore, an alternative approach is needed. In this study, we investigated the potential of hyperspectral techniques to identify fungi-infected vs. healthy plants of Vitis vinifera. We used the hyperspectral imaging sensor Specim-IQ to acquire leaves’ reflectance data of the Teroldego Rotaliano grapevine cultivar. We analyzed three different groups of plants: healthy, asymptomatic, and diseased. Highly significant differences were found in the near-infrared (NIR) spectral region with a decreasing pattern from healthy to diseased plants attributable to the leaf mesophyll changes. Asymptomatic plants emerged from the other groups due to a lower reflectance in the red edge spectrum (around 705 nm), ascribable to an accumulation of secondary metabolites involved in plant defense strategies. Further significant differences were observed in the wavelengths close to 550 nm in diseased vs. asymptomatic plants. We evaluated several machine learning paradigms to differentiate the plant groups. The Naïve Bayes (NB) algorithm, combined with the most discriminant variables among vegetation indices and spectral narrow bands, provided the best results with an overall accuracy of 90% and 75% in healthy vs. diseased and healthy vs. asymptomatic plants, respectively. To our knowledge, this study represents the first report on the possibility of using hyperspectral data for root rot disease diagnosis in woody plants. Although further validation studies are required, it appears that the spectral reflectance technique, possibly implemented on unmanned aerial vehicles (UAVs), could be a promising tool for a cost-effective, non-invasive method of Armillaria disease diagnosis and mapping in-field, contributing to a significant step forward in precision viticulture.
Yield estimation is an essential preharvest practice among most large-scale farming companies, since it enables the predetermination of essential logistics to be allocated (i.e., transportation means, supplies, labor force, among others). An overestimation may thus incur further costs, whereas an underestimation entails potential crop waste. More interestingly, an accurate yield estimation enables stakeholders to better place themselves in the market. Yet, computer-aided precision farming is set to play a pivotal role in this respect. Kiwifruit represents a major produce in several countries (e.g., Italy, China, New and Zealand). However, up to date, the relevant literature remains short of a complete as well as automatic system for kiwifruit yield estimation. In this paper, we present a fully automatic and noninvasive computer vision system for kiwifruit yield estimation across a given orchard. It consists mainly of an optical sensor mounted on a minitractor that surveys the orchard of interest at a low pace. Afterwards, the acquired images are fed to a pipeline that incorporates image preprocessing, stitching, and fruit counting stages and outputs an estimated fruit count and yield estimation. Experimental results conducted on two large kiwifruit orchards confirm a high plausibility (i.e., errors of 6% and 15%) of the proposed system. The proposed yield estimation solution has been in commercial use for about 2 years. With respect to the traditional manual yield estimation carried out by kiwifruit companies, it was demonstrated to save a significant amount of time and cut down on estimation errors, especially when speaking of large-scale farming.
The Armillaria genus represents one of the most common causes of chronic root rot disease in woody plants. The disease damage prompt assessment is crucial for pest management. However, the disease detection current methods are limited at the field scale. Therefore, an alternative approach that can enhance or supplement traditional techniques is needed. In this study, we investigated the potential of hyperspectral methods to identify the changes between fungi-infected and uninfected plants of Vitis vinifera in early detecting the Armillaria disease. The hyperspectral imaging sensor Specim-IQ was used to acquire images of leaves of the Teroldego Rotaliano grapevine cultivar. We analysed three groups of plants: healthy, asymptomatic, and diseased. Highly significant differences were found in the Near infrared (NIR) spectral region with a decreasing pattern from healthy to diseased plants attributable to internal leaf structure changes. Asymptomatic plants emerged from the other groups due to a smaller reflectance in the red-edge spectrum (around 705nm). Hypothetically associated with the presence of secondary metabolites involved in plant defence strategy. Furthermore, significant differences were observed in the wavelengths close to 550 nm in diseased plants versus asymptomatic. We used linear discriminant analysis from a machine learning context to classify the leaves based on the most significant variables (vegetation indices and single bands), with resulting overall accuracies of 85% and 84% respectively in healthy vs. diseased and healthy vs. asymptomatic. To our knowledge, this study represents the first report on the possibility of using hyperspectral data for root rot disease diagnosis on woody plants. Although further validation studies are required, it appears that the spectral reflectance technique, possibly implemented on unmanned aerial vehicles (UAV), could be a promising tool for a cost-effective, non-destructive method of Armillaria disease early diagnosis and mapping in the field, contributing to a significant step forward in precision viticulture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.