We give a brief overview of the string landscape and techniques used to construct string compactifications. We then explain how this motivates the notion of the swampland and review a number of conjectures that attempt to characterize theories in the swampland. We also compare holography in the context of superstrings with the similar, but much simpler case of topological string theory. For topological strings, there is a direct definition of topological gravity based on a sum over a "quantum gravitational foam." In this context, holography is the statement of an identification between a gravity and gauge theory, both of which are defined independently of one another. This points to a missing corner in string dualities which suggests the search for a direct definition of quantum theory of gravity rather than relying on its strongly coupled holographic dual as an adequate substitute (Based on TASI 2017 lectures given by C. Vafa).
We give a brief overview of the string landscape and techniques used to construct string compactifications. We then explain how this motivates the notion of the swampland and review a number of conjectures that attempt to characterize theories in the swampland. We also compare holography in the context of superstrings with the similar, but much simpler case of topological string theory. For topological strings, there is a direct definition of topological gravity based on a sum over a "quantum gravitational foam." In this context, holography is the statement of an identification between a gravity and gauge theory, both of which are defined independently of one another. This points to a missing corner in string dualities which suggests the search for a direct definition of quantum theory of gravity rather than relying on its strongly coupled holographic dual as an adequate substitute (Based on TASI 2017 lectures given by C. Vafa). Theoretical Advanced Study Institute in Elementary PoS(TASI2017)015The String Landscape, the Swampland, and the Missing Corner Cumrun VafaThese lecture notes from TASI 2017 give a brief overview of some of the open problems in string theory. We will be generally motivated by the philosophy that string theory is ultimately supposed to describe the fundamental laws of our universe. String theory is so versatile that it can be used to study a wide array of physical problems such as various topics in condensed matter and quark-gluon plasma or aspects of quantum fields theories in diverse dimensions. Much of the recent work using string theory has been focused on using its properties to solve specific problems rather than developing our understanding of string theory as a fundamental description of our universe. Here we aim to discuss topics which we hope will be useful in bringing string theory closer to observable aspects of fundamental physics.With this philosophy in mind, we will begin these lectures by reviewing some of what we know about string theory and its possible application to the universe by describing some generalities about the space of low energy theories theories coming from string theory compactifications: this is called the "string landscape." Supersymmetry plays a key organizing principle in this context. This will naturally lead us to investigate the question of how we know a priori if a low energy theory is in the landscape or it is not. The set of low energy physics models which look consistent but ultimately are not when coupled to gravity, is called the "swampland." Finding simple criteria to distinguish the swampland from the landscape is of great importance. In particular such criteria can lead to concrete predictions for our universe as we will discuss later. We review a number of conjectures which are aimed at distinguishing the swampland from the landscape.The string landscape and the swampland will be the topic of the first two lectures. In the third lecture, which is on a somewhat disjoint topic, we review critically where we are in our current understanding o...
In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local nature is generated dynamically once supersymmetry is broken and ensures cancellation of the tadpole. It can be interpreted as the stress caused by the restoring force that the stabilization mechanism exerts on the volume modulus. In the second part, we explain that it is surprisingly difficult to engineer sufficiently long warped throats to prevent decompactification which are also small enough in size to fit into the bulk Calabi-Yau (CY). We give arguments that achieving this with reasonable amount of control may not be possible in generic CY compactifications while CYs with very non-generic geometrical properties might evade our conclusion.
We consider type II string compactifications on Calabi-Yau orientifolds with fluxes and D-branes, and analyse the F-term scalar potential that simultaneously involves closed and open string modes. In type IIA models with D6-branes this potential can be directly computed by integrating out Minkowski three-forms. The result shows a multibranched structure along the space of lifted open string moduli, in which discrete shifts in special Lagrangian and Wilson line deformations are compensated by changes in the RR flux quanta. The same sort of discrete shift symmetries are present in the superpotential and constrain the Kähler potential. As for the latter, inclusion of open string moduli breaks the factorisation between complex structure and Kähler moduli spaces. Nevertheless, the 4d Kähler metrics display a set of interesting relations that allow to rederive the scalar potential analytically. Similar results hold for type IIB flux compactifications with D7-brane Wilson lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.