The layout solution for linear rail transport infrastructure will always alternate ‘surface’ sections with ‘tunnel’ and ‘viaduct’ sections. The capital expenditure (CapEx) linked at the planning stage to this type of public asset is strongly connected to the quantity of tunnels and viaducts planned. In this context, for similar lengths, a railway line using 15% tunnels and 7% viaducts to link two cities should not have the same financial viability as one using 8% tunnels and 3% viaducts to link the same cities. The process of planning, design and construction of linear works is heavily scrutinised by public administrations in all countries, and in many cases similar standards of work are shared. Firstly, this research paper highlights the existence of hidden geometric patterns in all linear transport infrastructures worldwide. Secondly, it proposes to exploit the existence of such patterns for the benefit of planners through the computational power available today in machine learning-as-a-service (MLaaS) platforms. This article demonstrates how geometric features extracted from any succession of rectangular trapeziums in linear infrastructures can predict the quantity of kilometres in ‘surface’, ‘tunnel’ and ‘viaduct’ sections in future linear rail transport infrastructures that have not yet been built. The practical application of the proposed working methodology has made it possible to intuit the characteristics of a future Hyperloop transport network in Europe of more than 12,000 km in length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.