To compare the new tools to evaluate the energy dissipated to the lung parenchyma in mechanically ventilated children with and without lung injury. We compared their discrimination capability between both groups when indexed by ideal body weight and driving pressure. DESIGN:Post hoc analysis of individual patient data from two previously published studies describing pulmonary mechanics. SETTING:Two academic hospitals in Latin-America. PATIENTS:Mechanically ventilated patients younger than 15 years old were included. We analyzed two groups, 30 children under general anesthesia (ANESTH group) and 38 children with pediatric acute respiratory distress syndrome. INTERVENTIONS:Respiratory mechanics were measured after intubation in all patients. MEASUREMENTS AND MAIN RESULTS:Mechanical power and derived variables of the equation of motion (dynamic power, driving power, and mechanical energy) were computed and then indexed by ideal body weight. Driving pressure was higher in pediatric acute respiratory distress syndrome group compared with ANESTH group. Receiver operator curve analysis showed that driving pressure had the best discrimination capability compared with all derived variables of the equation of motion indexed by ideal body weight. The same results were observed when the subgroup of patients weighs less than 15 kg. There was no difference in unindexed mechanical power between groups. CONCLUSIONS:Driving pressure is the variable that better discriminates pediatric acute respiratory distress syndrome from nonpediatric acute respiratory distress syndrome in children than the calculations derived from the equation of motion, even when indexed by ideal body weight. Unindexed mechanical power was useless to differentiate against both groups. Future studies should determine the threshold for variables of the energy dissipated by the lungs and their association with clinical outcomes.
Spinal anesthesia (SA) may be difficult in small infants. Conceptual advantages of ultrasound imaging to view critical neuraxial structures and exploiting the acoustic window unique to infants have been described but not clinically verified. We present 14 preterm-infants aged 35–48 weeks, weighing 1575–5800 g, and describe ultrasound imaging to locate an appropriate puncture site for SA. The success rate for first puncture was 64%, and the overall success on three attempts was 86%. The mean dural depth was 8 mm (1.6). The inferior medullary cone location was just above L3–L4 in 85.7% of patients. Ultrasound imaging for SA in infants may offer advantages.
Acute respiratory distress syndrome (ARDS) is a complex entity with high potential for harm and healthcare resource utilization. Despite multiple clinical advances in its ventilatory management, ARDS continues to be one of the most challenging disease processes for intensivists. It continues to lack a direct, proven and desperately needed effective therapeutic intervention. Given their biologic rationale, corticosteroids have been widely used by clinicians and considered useful by many in the management of ARDS since its first description. Adult data is abundant, yet contradictory. Controversy remains regarding the routine use of corticosteroids in ARDS. Therefore, widespread evidence-based recommendations for this heterogeneous disease process have not been made. In this article, our aim was to provide a summary of available evidence for the role of steroids in the treatment of ARDS, while giving special focus on pediatric ARDS (PARDS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.