Pattern recognition in financial time series is not a trivial task, due to level of noise, volatile context, lack of formal definitions and high number of pattern variants. A current research trend involves machine learning techniques and online computing. However, medium-term trading is still based on humancentric heuristics, and the integration with machine learning support remains relatively unexplored. The purpose of this study is to investigate potential and perspectives of a novel architectural topology providing modularity, scalability and personalization capabilities. The proposed architecture is based on the concept of Receptive Fields (RF), i.e., sub-modules focusing on specific patterns, that can be connected to further levels of processing to analyze the price dynamics on different granularities and different abstraction levels. Both Multilayer Perceptrons (MLP) and Support Vector Machines (SVM) have been experimented as a RF. Early experiments have been carried out over the FTSE-MIB index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.