BackgroundDelayed onset muscle soreness (DOMS) due to eccentric muscle activity is associated with inflammatory responses and production of reactive oxygen species (ROS) that sustain both inflammation and oxidative stress. Curcumin, a powerful promoter of anti-oxidant response, is one of the best-investigated natural products, and is now commercially available as a lecithin delivery system (Meriva®, Indena SpA, Milan) with improved bio-availability. The aim of this study was to test whether curcumin could attenuate damage from oxidative stress and inflammation related to acute muscle injury induced by eccentric continuous exerciseMethodsThis was a randomised, placebo-controlled, single-blind pilot trial. Twenty male healthy, moderately active volunteers were randomised to curcumin given as the Phytosome® delivery system 1 g twice daily (200 mg curcumin b.i.d.) or matching placebo. Supplementation was initiated 48 hours prior to a downhill running test and was continued for 24 hours after the test (4 days in total). Muscle damage was quantified by magnetic resonance imaging, laboratory tests and histological analyses on muscle samples obtained 48 hours after the test. Patient-reported pain intensity was also recorded.ResultsSubjects in the curcumin group reported less pain in the lower limb as compared with subjects in the placebo group, although significant differences were observed only for the right and left anterior thighs. Significantly fewer subjects in the curcumin group had MRI evidence of muscle injury in the posterior or medial compartment of both thighs. Increases in markers of muscle damage and inflammation tended to be lower in the curcumin group, but significant differences were only observed for interleukin-8 at 2 h after exercise. No differences in markers of oxidative stress and muscle histology were observedConclusionsCurcumin has the potential for preventing DOMS, as suggested by its effects on pain intensity and muscle injury. Larger studies are needed to confirm these results and further clarify the mechanism of action of curcumin.
Sodium, potassium, and cesium salts (iodides, nitrates, acetates, and tetraphenylborates) form 1/1, 1/2 and 2/3 adducts with MLn [M = Co, Ni, Cu, and Zn; n = 1-4; H2L1 = N,N'-(3-methoxysalicyliden)ethane-1,2-diamine; H2L2, H2L3, and H2L4 are the -propane-1,2-diamine, -o-phenylenediamine, and -propane-1,3-diamine analogues of H2L1). Metal salicyladimine, alkali metal, and anion all exert influence on stoichiometry and reactivity. Sodium ions tend to reside within the planes of the salicylaldimine oxygens, as in Na(NO3)(MeOH).NiL4 (1), Na(NO3)(MeOH).CuL1 (2; both with unusual seven-coordinated sodium), and Na.(NiL4)2I.EtOH.H2O (3; with dodecahedral sodium coordination geometry). Potassium and cesium tend to locate between salicylaldimine ligands as in KI.NiL4 (4) and [Cs(NO3).NiL4]3.MeOH (5; structures with infinite sandwich assemblies), CsI.(NiL2)2.H2O (6), CsI3.(NiL4)2 (7; simple sandwich structures), and [K(MeCN)]2.(NiL4)3 (8; a triple-decker sandwich structure). Crystal data for 1 are the following: triclinic, P1, a = 7.3554(6) A, b = 11.2778(10) A, c = 13.562(2) A, alpha = 96.364(10) degrees, beta = 101.924(9) degrees, gamma = 96.809(10) degrees, Z = 2. For 2, triclinic, P1, a = 7.2247(7) A, b = 11.0427(6) A, c = 13.5610(12) A, alpha = 94.804(5) degrees, beta = 98.669(7) degrees, gamma = 99.26(6) Z = 2. For 3, orthorhombic, Pbca, a = 14.4648(19) A, b = 20.968(3) A, c = 28.404(3) A, Z = 8. For 4, triclinic, P1, a = 12.4904(17) A, b = 13.9363(13) A, c = 14.1060(12) A, alpha = 61.033(7) degrees, beta = 89.567(9) degrees, gamma = 71.579(10) degrees, Z = 2. For 5, monoclinic. P2(1)/n, a = 12.5910(2) A, b = 23.4880(2) A, c = 22.6660(2) A, beta = 99.3500(1) degree, Z = 4. For 6, orthorhombic, Pbca, a = 15.752(3) A, b = 23.276(8) A, c = 25.206(6) A, Z = 8. For 7, triclinic, P1, a = 9.6809(11) A, b = 10.0015(13) A, c = 11.2686(13) A, alpha = 101.03 degrees, beta = 90.97 degrees, gamma = 100.55 degrees, Z = 2. For 8, monoclinic, C2/c, a = 29.573(5) A, b = 18.047(3) A, c = 23.184(3) A, beta = 122.860(10) degrees, Z = 8.
A novel class of dinucleating ligands has been introduced into manganese chemistry to study the reactivity of this metal towards dioxygen under strictly controlled conditions. Such N4 ligands combine some of the major peculiarities of tetradentate Schiff bases and the porphyrin skeleton. They are derived from the condensation between 2-pyrrolaldehyde and ethylenediamine or o-phenylenediamine, leading to pyrenH2 (LH2, 1), pyrophenH2 (L'H2, 2) and Me2pyrophenH2, (L"H2, 3), respectively. Their metallation with [Mn3-(Mes)6] (Mes = 2,4,6-trimethylphenyl) led to [Mn2L2] (4), [MnL'(thf)2] (5) and [MnL"(thf)2] (6). Complex 4 displays a double-stranded helical structure, while 5 and 6 are mononuclear complexes containing hexacoordinated metals. Regardless of their structure, complexes 5 and 6 behave in a similar manner to 4 in their reaction with dioxygen, namely, as a dimetallic unit inside a cavity defined by two dinucleating ligands. These reactions led to dinuclear MnIII/MnIV oxo-hydroxo derivatives, [Mn2L2(mu-O)(mu-OH)] (7), [Mn2L'2(mu-O)(mu-OH)] (8) and [Mn2L"2(mu-O)(mu-OH)] (9), in which the two Mn ions are strongly antiferromagnetically coupled [J = -53 (7), J = -64 (8), J = -60 cm(-1) (9)]. The crystal structure of 7 could only be solved with synchrotron radiation as the crystals diffracted very poorly and suffered from twisting and disorder. The formation of 7-9 has been proposed to occur through the formation of an intermediate dinuclear hydroperoxo species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.