The combined use of high hydrostatic pressure (300 to 676 MPa, 5 min) and thermal treatment (85 degrees C, 30 min) in milk for the manufacture of low-fat yogurt was studied. The objective was to reduce syneresis and improve the rheological properties of yogurt, reducing the need for thickeners and stabilizers. The use of high hydrostatic pressure alone, or after thermal treatment, reduced the lightness and increased the viscosity of skim milk. However, milk recovered its initial lightness and viscosity when thermal treatment was applied after high hydrostatic pressure. The MALDI-TOF spectra of skim milk presented monomers of whey proteins after a treatment of 676 MPa for 5 min. Yogurts made from skim milk subjected to 400 to 500 MPa and thermal treatment showed increased yield stress, resistance to normal penetration, and elastic modulus, while having reduced syneresis when compared to yogurts from thermally treated or raw milks. The combined use of thermal treatment and high hydrostatic pressure assures extensive whey protein denaturation and casein micelle disruption, respectively. Although reaggregation of casein submicelles occurs during fermentation, the net effect of the combined HHP and thermal treatment is the improvement of yogurt yield stress and reduction of syneresis.
Yerba Mate is a popular tea beverage produced and consumed in the South American countries of Argentina, Brazil, Chile, Paraguay, and Uruguay, and is processed from the leaves and stems of Ilex paraguariensis A. St.-Hil., a perennial shrub from the Aquifoliaceae family. Production occurs in six stages: harvesting older leaves and small stems, roasting by direct fire, drying under hot air, milling to specified size, aging to acquire optimal sensory attributes, and final packaging. While grown and consumed for centuries in South America, its popularity is increasing in the United States because of demand by consumers for healthier, more natural foods, its filling a niche for a different type of tea beverage, and for Yerba Mate's potential health benefits-antimicrobial, antioxidant, antiobesity, anti-diabetic, digestive improvement, stimulant, and cardiovascular properties. Cultivation, production and processing may cause a variation in bioactive compounds biosynthesis and degradation. Recent research has been expanded to its potential use as an antimicrobial, protecting crops and foods against foodborne, human and plant pathogens. Promising results for the use of this botanical in human and animal health has prompted this review. This review focuses on the known chemical composition of Yerba Mate, the effect of cultivation, production and processing may have on composition, along with a specific discussion of those compounds found in Yerba Mate that have antimicrobial properties.
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed.
Milk and dairy products are an important source of choline, a nutrient essential for human health. Infant formula derived from bovine milk contains a number of metabolic forms of choline, all contribute to the growth and development of the newborn. At present, little is known about the factors that influence the concentrations of choline metabolites in milk. The objectives of this study were to characterize and then evaluate associations for choline and its metabolites in blood and milk through the first 37 weeks of lactation in the dairy cow. Milk and blood samples from twelve Holstein cows were collected in early, mid and late lactation and analyzed for acetylcholine, free choline, betaine, glycerophosphocholine, lysophosphatidylcholine, phosphatidylcholine, phosphocholine and sphingomyelin using hydrophilic interaction liquid chromatography-tandem mass spectrometry, and quantified using stable isotope-labeled internal standards. Total choline concentration in plasma, which was almost entirely phosphatidylcholine, increased 10-times from early to late lactation (1305 to 13,535 µmol/L). In milk, phosphocholine was the main metabolite in early lactation (492 µmol/L), which is a similar concentration to that found in human milk, however, phosphocholine concentration decreased exponentially through lactation to 43 µmol/L in late lactation. In contrast, phosphatidylcholine was the main metabolite in mid and late lactation (188 µmol/L and 659 µmol/L, respectively), with the increase through lactation positively correlated with phosphatidylcholine in plasma (R 2 = 0.78). Unlike previously reported with human milk we found no correlation between plasma free choline concentration and milk choline metabolites. The changes in pattern of phosphocholine and phosphatidylcholine in milk through lactation observed in the bovine suggests that it is possible to manufacture infant formula that more closely matches these metabolites profile in human milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.