We study the origin of quantum probabilities as arising from non-boolean propositionaloperational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorvian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case).
We present a quantum version of the generalized $(h,\phi)$-entropies,
introduced by Salicr\'u \textit{et al.} for the study of classical probability
distributions. We establish their basic properties, and show that already known
quantum entropies such as von Neumann, and quantum versions of R\'enyi,
Tsallis, and unified entropies, constitute particular classes of the present
general quantum Salicr\'u form. We exhibit that majorization plays a key role
in explaining most of their common features. We give a characterization of the
quantum $(h,\phi)$-entropies under the action of quantum operations, and study
their properties for composite systems. We apply these generalized entropies to
the problem of detection of quantum entanglement, and introduce a discussion on
possible generalized conditional entropies as well.Comment: 26 pages, 1 figure. Close to published versio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.