In recent years, an innovative technology based on polymeric conductors and semiconductors has undergone rapid growth. These materials offer several advantages with respect to metals and inorganic conductors: lightness, large elasticity and resilience, resistance to corrosion, flexibility, impact strength, etc. These properties are suitable for implementing wearable devices. In particular, a sensitive glove able to detect the position and the motion of fingers and a sensorized leotard have been developed. Here, the characterization of the strain-sensing fabric is presented. In the first section, the polymerization process used to realize the strain sensor is described. Then, the thermal and mechanical transduction properties of the strain sensor are investigated and a geometrical parameter to invariantly codify the sensor response during aging is proposed. Finally, a brief outline of ongoing applications is reported.
Abstract-Posture and gesture analysis, together with the monitoring of body kinematics, is a field of increasing interest in bioengineering and several connected disciplines. In this paper, some typical features of distributed sensing systems are described, as well as a methodology to read signals from such systems. Theory, simulation, results, and some specific applications are shown. Strain gauges have been used as sensors and have been deposited directly onto textile fibers, demonstrating one way to realize a wearable sensor system. Index Terms-Electroactive polymers, posture reconstruction, redundancy in sensing systems, resistive network reading algorithms, smart textiles.
In this paper, we report on a new technology used to implement strain sensors to be integrated in usual garments. A particular conductive mixture based on commercial products is realized and directly spread over a piece of fabric, which shows, after the treatment, piezoresistive properties, i.e., a change in resistance when it is strained. This property is exploited to realize sensorized garments such as gloves, leotards, and seat covers capable of reconstructing and monitoring body shape, posture, and gesture. In general, this technology is a good candidate for adherent wearable systems with excellent mechanical coupling with body surface. Here, we mainly focused on a sensorized glove able to detect posture and movements of the fingers. It could be used in several fields of application. We report on experimental results of a sensorized glove used as movements recorder for rehabilitation therapies and medicine. Furthermore, we describe a dedicated methodology used to read the output sensors which allowed to avoid using metallic wires for the connections. The price to be paid for all these advantages is a nonlinear electric response of the fabric sensor and a too long settling time, that in principle, make these sensors not suitable for real-time applications. Here we propose a hardware and computational solution to overcome this limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.