A recent and extensive literature has pioneered the summing of squared observed intra-daily returns, "realized variance", to estimate the daily integrated variance of financial asset prices, a traditional object of economic interest. We show that, in the presence of market microstructure noise, realized variance does not identify the daily integrated variance of the frictionless equilibrium price. However, we demonstrate that the noise-induced bias at very high sampling frequencies can be appropriately traded off with the variance reduction obtained by high-frequency sampling and derive a mean-squared-error (MSE) optimal sampling theory for the purpose of integrated variance estimation. We show how our theory naturally leads to an identification procedure, which allows us to recover the moments of the unobserved noise; this procedure may be useful in other applications. Finally, using the profits obtained by option traders on the basis of alternative variance forecasts as our economic metric, we find that explicit optimization of realized variance's finite sample MSE properties results in accurate forecasts and considerable economic gains. Copyright 2008 The Review of Economic Studies Limited.
We propose a functional estimation procedure for homogeneous stochastic differential equations based on a discrete sample of observations and with minimal requirements on the data generating process. We show how to identify the drift and diffusion function in situations where one or the other function is considered a nuisance parameter. The asymptotic behavior of the estimators is examined as the observation frequency increases and as the time span lengthens. We prove almost sure consistency and weak convergence to mixtures of normal laws, where the mixing variates depend on the chronological local time of the underlying diffusion process, that is the random time spent by the process in the vicinity of a generic spatial point. The estimation method and asymptotic results apply to both stationary and nonstationary recurrent processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.