In order that cells respond to environmental cues, they must be able to measure ambient ligand concentration. Concentrations fluctuate, however, because of thermal noise, and one can readily show that estimates based on concentration values at a particular moment will be subject to substantial error. Cells are therefore expected to average their estimates over some limited time period. In this paper we assume that a cell uses fractional receptor occupancy as a measure of ambient ligand concentration and develop general expressions for the error a cell makes because the length of the averaging period is necessarily limited. Our analysis is general, relieving many of the assumptions underlying the seminal work of Berg and Purcell. The most important formal difference is our inclusion of occupancy-dependent dissociation--a phenomenon that has been well-documented for many systems. In addition, our formulation permits signal averaging to begin before chemical equilibrium has been established and it allows binding kinetics to be nonlinear (i.e., biomolecular rather than pseudo-first-order). The results are applied to spatial and temporal concentration gradients. In particular we estimate the minimum averaging times required for cells to detect such gradients under typical in vitro conditions. These estimates involve assigning numerical values to receptor ligand rate constants. If the rate constants are at their maximum possible values (limited only by center of mass diffusion), then either temporal or spatial gradients can be detected in minutes or less. If, however, as suggested by experiments, the rate constants are several orders of magnitude below their diffusion-limited values, then under typical constant gradient conditions the time required to detect a spatial gradient is prohibitively long, whereas temporal gradients can still be detected in reasonable lengths of time. This result was obtained for large cells such as lymphocytes, as well as for the smaller, bacterial cells. The ratio of averaging times for the two mechanisms--amounting to several orders of magnitude--is well beyond what could be reconciled by limitations of the calculation, and strongly suggests heavy reliance on temporal sensing mechanisms under typical in vitro conditions with constant spatial gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.