The research aims were to identify the flowering pattern and the related functional strategies in submediterranean mountain meadows (central Italy) and understand their relationships with some environmental and community structure variables. The number of flowering shoots per species was counted and environmental data were collected in 40 plots during 2009. Analysis of the species and trait data sets highlighted a flowering pattern and an underlying functional pattern. Dominant species tend to bloom in the central phases of the growing season\ud
when no stress acts in the system and a long time is\ud
available for plant growth and seed maturation. This kind of species does not need functional strategies allowing the canopy fast pre-emption or the tolerance to drought stress. Non-dominant species have two groups of functional strategies that allow them to share the same flowering period of dominant ones by a\ud
different type of space occupation (spatial niche partitioning) or to flower before or after their flowering period (temporal niche partitioning). The functional strategies involved in the temporal niche partitioning have a dual ecological meaning, limiting competition with dominant species by fast growth and seed\ud
maturation (e.g., short stature, mobilisation of stored reserves, colonization of unexploited soil niches by clonal growth organs and light seeds) and enabling tolerance to drought stress (e.g., scleromorphic and succulent leaves, persistent green leaves, tap roots) and to the low light availability at the ground level\ud
owing to the change of grassland structure (e.g., tall size and upright growth form)
Italy is among the European countries with the greatest plant diversity due to both a great environmental heterogeneity and a long history of man-environment interactions. Trait-based approaches to ecological studies have developed greatly over recent decades worldwide, although several issues concerning the relationships between plant functional traits and the environment still lack sufficient empirical evaluation. In order to draw insights on the association between plant functional traits and direct and indirect human and natural pressures on the environmental drivers, here we summarize the existing knowledge on this topic by reviewing the results of studies performed in Italy adopting a functional trait approach on vascular plants, briophytes and lichens. Although we recorded trait measurements for 1418 taxa, our review highlighted some major gaps in plant traits knowledge: Mediterranean ecosystems are poorly represented; traits related to belowground organs are still overlooked; traits measurements for bryophytes and lichens are lacking. Finally, intraspecific variation has been little studied at community level so far. We conclude highlighting the need of approaches evaluating trait-environment relationship at large spatial and temporal scales and the need of a more effective contribution to online databases to tie more firmly Italian researchers to international scientific networks on plant traits.
Invasion of the tall grass Brachypodium genuense was observed in an area of the central Apennines (Italy) where the population size of Apennine chamois (Rupicapra pyrenaica ornata) was in strong decline. Since this dominant tall grass threatens biodiversity and forage quality, our hypothesis was that B. genuense abundance influenced that of palatable species for the chamois, depending on their functional traits and distribution patterns. Our sampling design used plots of 10 × 10 m and 1 × 1 m to investigate the plant community level and fine-scale interactions. We analyzed data using correlation, generalized linear models, and redundancy analyses. We found that B. genuense can reach high abundance values on the deepest soils. Its high cover value influences plant community composition by competitive exclusion of subordinate species and suppression of functional features because of temporal or spatial niche overlap. This leads to low cover of palatable species at a fine scale, and to poor pasture quality for chamois at a wider scale. Therefore, we postulated that B. genuense invasion, enhanced by long-term grazing cessation, may reduce the availability of palatable plants for Apennine chamois, especially below the potential timberline (1900-2000 m a.s.l.). The high abundance of B. genuense may amplify the effect of other negative factors, such as competition with red deer (Cervus elaphus) and climate change, in restricting the suitable habitat of the Apennine chamois to the higher sectors of the central Apennines. Thus, we suggested that B. genuense spread should be monitored carefully and plans to control its invasion should be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.