This paper derives some exact power properties of tests for spatial autocorrelation in the context of a linear regression model. In particular, we characterize the circumstances in which the power vanishes as the autocorrelation increases, thus extending the work of Krämer (2005, Journal of Statistical Planning and Inference 128, 489-496). More generally, the analysis in the paper sheds new light on how the power of tests for spatial autocorrelation is affected by the matrix of regressors and by the spatial structure. We mainly focus on the problem of residual spatial autocorrelation, in which case it is appropriate to restrict attention to the class of invariant tests, but we also consider the case when the autocorrelation is due to the presence of a spatially lagged dependent variable among the regressors. A numerical study aimed at assessing the practical relevance of the theoretical results is included.
We show that for any sample size, any size of the test, and any weights matrix outside a small class of exceptions, there exists a positive measure set of regression spaces such that the power of the Cliff-Ord test vanishes as the autocorrelation increases in a spatial error model. This result extends to the tests that define the Gaussian power envelope of all invariant tests for residual spatial autocorrelation. In most cases, the regression spaces such that the problem occurs depend on the size of the test, but there also exist regression spaces such that the power vanishes regardless of the size. A characterization of such particularly hostile regression spaces is provided.
The quasi-maximum likelihood estimator for the autoregressive parameter in a spatial autoregression usually cannot be written explicitly in terms of the data. A rigorous analysis of the first-order asymptotic properties of the estimator, under some assumptions on the evolution of the spatial design matrix, is available in Lee (2004), but very little is known about its exact or higher-order properties. In this paper we first show that the exact cumulative distribution function of the estimator can, under mild assumptions, be written in terms of that of a particular quadratic form. Simple examples are used to illustrate important exact properties of the estimator that follow from this representation. In general models a complete exact analysis is not possible, but a higher-order (saddlepoint) approximation is made available by the main result. We use this approximation to construct confidence intervals for the autoregressive parameter. Coverage properties of the proposed confidence intervals are studied by Monte Carlo simulation, and are found to be excellent in a variety of circumstances.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autoregressive model cannot in general be written explicitly in terms of the data. The only known properties of the estimator have hitherto been its first-order asymptotic properties (Lee, 2004, Econometrica), derived under specific assumptions on the evolution of the spatial weights matrix involved. In this paper we show that the exact cumulative distribution function of the estimator can, under mild assumptions, be written down explicitly. A number of immediate consequences of the main result are discussed, and several examples of theoretical and practical interest are analyzed in detail. The examples are of interest in their own right, but also serve to illustrate some unexpected features of the distribution of the MLE. In particular, we show that the distribution of the MLE may not be supported on the entire parameter space, and may be nonanalytic at some points in its support. Terms of use: Documents in
We show that any invariant test for spatial autocorrelation in a spatial error or spatial lag model with equal weights matrix has power equal to size. This result holds under the assumption of an elliptical distribution. Under Gaussianity, we also show that any test whose power is larger than its size for at least one point in the parameter space must be biased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.