We address the use of backscattered mm-wave radio signals to track humans as they move within indoor environments. The common approach in the literature leverages the extended Kalman filter (EKF) method, which however undergoes a severe performance degradation when the system evolution model is highly non-linear or presents long-term time dependencies among the system states. In this work, we propose an original model-free tracking procedure based on denoising autoencoders and sequence-to-sequence neural networks, showing its superior performance with respect to state-of-the-art methods. Our architecture can be trained in either a supervised or unsupervised manner, trading tracking accuracy for flexibility. The proposed system is tested on our own measurements, obtained with a 77 GHz radar on single and multiple subjects simultaneously moving in an indoor space. The results are compared against the ground truth trajectories from a motion tracking system, obtaining average tracking errors as low as 12 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.