The appearance of agricultural products deeply conditions their marketing. Appearance is normally evaluated by considering size, shape, form, colour, freshness condition and finally the absence of visual defects. Among these features, the shape plays a crucial role. Description of agricultural product shape is often necessary in research fields for a range of different purposes, including the investigation of shape traits heritability for cultivar descriptions, plant variety or cultivar patents and evaluation of consumer decision performance. This review reports the main applications of shape analysis on agricultural products such as relationships between shape and: (1) genetic; (2) conformity and condition ratios; (3) products characterization; (4) product sorting and finally, (5) clone selection. Shape can be a protagonist of evaluation criteria only if an appreciable level of image shape processing and automation and data are treated with solid multivariate statistic. In this context, image-processing algorithms have been increasingly developed in the last decade in order to objectively measure the external features of agricultural products. Grading and sorting of agricultural products using machine vision in conjunction with pattern recognition techniques offers many advantages over the conventional optical or mechanical sorting devices. With this aims, we propose a new automated shape processing system which could be useful for both scientific and industrial purposes, forming the bases of a common language for the scientific community. We applied such a processing scheme to morphologically discriminate nuts fruit of different species. Operative Matlab codes for shape analysis are reported.
BACKGROUND Food security can benefit from the technology's transparency, relatively low transaction costs and instantaneous applications. A blockchain is a distributed database of records in the form of encrypted blocks, or a public ledger of all transactions or digital events that have been executed and shared among participating parties and can be verified at any time in the future. Generally, the robust and decentralized functionality of the blockchain is used for global financial systems, but it can easily be expanded to contracts and operations such as tracking of the global supply chain. In the precision agriculture context, Information and Communications Technology can be further implemented with a blockchain infrastructure to enable new farm systems and e‐agriculture schemes. RESULTS The purpose of this review is to show a panorama of the scientific studies (enriched by a terms mapping analysis) on the use of blockchain in the agri‐food sector, from both an entirely computational and an applicative point of view. As evidenced by the network analysis, the reviewed studies mainly focused on software aspects (e.g. the architecture and smart contracts). However, some aspects regarding the different blockchain knots (computers always connected to the blockchain network) having the role to store and distribute an updated copy of each block in a food supply‐chain, result of crucial importance. CONCLUSION These technologies appear very promising and rich of great potential showing a good flexibility for applications in several sectors but still immature and hard to apply due to their complexity. © 2019 Society of Chemical Industry
This is the first work to introduce the use of blockchain technology for the electronic traceability of wood from standing tree to final user. Infotracing integrates the information related to the product quality with those related to the traceability [physical and digital documents (Radio Frequency IDentification—RFID—architecture)] within an online information system whose steps (transactions) can be made safe to evidence of alteration through the blockchain. This is a decentralized and distributed ledger that keeps records of digital transactions in such a way that makes them accessible and visible to multiple participants in a network while keeping them secure without the need of a centralized certification organism. This work implements a blockchain architecture within the wood chain electronic traceability. The infotracing system is based on RFID sensors and open source technology. The entire forest wood supply chain was simulated from standing trees to the final product passing through tree cutting and sawmill process. Different kinds of Internet of Things (IoT) open source devices and tags were used, and a specific app aiming the forest operations was engineered to collect and store in a centralized database information (e.g., species, date, position, dendrometric and commercial information).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.