Cope's rule is the trend toward increasing body size in a lineage over geological time. The rule has been explained either as passive diffusion away from a small initial body size or as an active trend upheld by the ecological and evolutionary advantages that large body size confers. An explicit and phylogenetically informed analysis of body size evolution in Cenozoic mammals shows that body size increases significantly in most inclusive clades. This increase occurs through temporal substitution of incumbent species by larger-sized close relatives within the clades. These late-appearing species have smaller spatial and temporal ranges and are rarer than the incumbents they replace, traits that are typical of ecological specialists. Cope's rule, accordingly, appears to derive mainly from increasing ecological specialization and clade-level niche expansion rather than from active selection for larger size. However, overlain on a net trend toward average size increase, significant pulses in origination of large-sized species are concentrated in periods of global cooling. These pulses plausibly record direct selection for larger body size according to Bergmann's rule, which thus appears to be independent of but concomitant with Cope's.
Aim Because of their recent evolutionary radiation, capuchin monkeys represent an ideal group with which to investigate ecomorphological adaptations in relation to geography and climate. Our aim was to identify patterns of both skull size and shape variation in capuchins in relation to environmental variables and latitude.Location Tropical and subtropical South America.Methods We performed geometric morphometric analyses of skull shape in 228 capuchin monkey individuals belonging to either the genera Sapajus (seven species) or Cebus (two species), representing 94 localities in South America. Twenty-three homologous landmarks were digitized to describe skull shape. We regressed skull shape against latitude, longitude, skull size and environmental variables, using ordinary and partial least squares regressions. Variation partitioning was used to test for the relative contribution to shape variance by taxonomy, allometry and environment, and their interaction terms. ResultsWe found a significant impact of latitude, climate and size on skull shape. The allometric component of shape variation, although large, is not congruent with shape differences between species, and probably reflects ontogenetic effects. Partial least squares between bioclimatic variables and skull shape explain some 98% of the covariation between environment and shape. Species distributed in drier, more seasonal southern localities exhibit a narrow skull with elongated muzzle and relatively larger teeth. Variation partitioning suggests that the difference in skull shape between species is highly correlated with climatic variation but not with skull size.Main conclusions Skull shape in capuchins is significantly related to both environment and skull size. The former, but not the latter, is significantly associated with shape differences between species. The Sapajus clade originated in the south, and experienced an evolutionary radiation during the Pleistocene. As new Sapajus species moved to the north, they adapted to the local environmental conditions, eventually resembling Cebus in skull shape as they reached the Amazon rain forest, in response to their shared environmental conditions.
A classic question in evolutionary biology concerns the tempo and mode of lineage evolution. Considered variously in relation to resource utilization, intrinsic constraints or hierarchic level, the question of how evolutionary change occurs in general has continued to draw the attention of the field for over a century and a half. Here we use the largest species-level phylogeny of Coenozoic fossil mammals (1031 species) ever assembled and their body size estimates, to show that body size and taxonomic diversification rates declined from the origin of placentals towards the present, and very probably correlate to each other. These findings suggest that morphological and taxic diversifications of mammals occurred hierarchically, with major shifts in body size coinciding with the birth of large clades, followed by taxonomic diversification within these newly formed clades. As the clades expanded, rates of taxonomic diversification proceeded independently of phenotypic evolution. Such a dynamic is consistent with the idea, central to the Modern Synthesis, that mammals radiated adaptively, with the filling of adaptive zones following the radiation.
Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group.
Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.