In this paper, we present the ALIEN tracking method that exploits oversampling of local invariant representations to build a robust object/context discriminative classifier. To this end, we use multiple instances of scale invariant local features weakly aligned along the object template. This allows taking into account the 3D shape deviations from planarity and their interactions with shadows, occlusions, and sensor quantization for which no invariant representations can be defined. A non-parametric learning algorithm based on the transitive matching property discriminates the object from the context and prevents improper object template updating during occlusion. We show that our learning rule has asymptotic stability under mild conditions and confirms the drift-free capability of the method in long-term tracking. A real-time implementation of the ALIEN tracker has been evaluated in comparison with the state-of-the-art tracking systems on an extensive set of publicly available video sequences that represent most of the critical conditions occurring in real tracking environments. We have reported superior or equal performance in most of the cases and verified tracking with no drift in very long video sequences.
Image analysis and computer vision can be effectively employed to recover the three-dimensional structure of imaged objects, together with their surface properties. In this paper, we address the problem of metric reconstruction and texture acquisition from a single uncalibrated view of a surface of revolution (SOR). Geometric constraints induced in the image by the symmetry properties of the SOR structure are exploited to perform self-calibration of a natural camera, 3D metric reconstruction, and texture acquisition. By exploiting the analogy with the geometry of single axis motion, we demonstrate that the imaged apparent contour and the visible segments of two imaged cross sections in a single SOR view provide enough information for these tasks. Original contributions of the paper are: single view self-calibration and reconstruction based on planar rectification, previously developed for planar surfaces, has been extended to deal also with the SOR class of curved surfaces; self-calibration is obtained by estimating both camera focal length (one parameter) and principal point (two parameters) from three independent linear constraints for the SOR fixed entities; the invariant-based description of the SOR scaling function has been extended from affine to perspective projection. The solution proposed exploits both the geometric and topological properties of the transformation that relates the apparent contour to the SOR scaling function. Therefore, with this method, a metric localization of the SOR occluded parts can be made, so as to cope with them correctly. For the reconstruction of textured SORs, texture acquisition is performed without requiring the estimation of external camera calibration parameters, but only using internal camera parameters obtained from self-calibration.
We present a novel online unsupervised method for face identity learning from video streams. The method exploits deep face descriptors together with a memory based learning mechanism that takes advantage of the temporal coherence of visual data. Specifically, we introduce a discriminative feature matching solution based on Reverse Nearest Neighbour and a feature forgetting strategy that detect redundant features and discard them appropriately while time progresses. It is shown that the proposed learning procedure is asymptotically stable and can be effectively used in relevant applications like multiple face identification and tracking from unconstrained video streams. Experimental results show that the proposed method achieves comparable results in the task of multiple face tracking and better performance in face identification with offline approaches exploiting future information. Code will be publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.