Comparing populations across temperature gradients can inform how global warming will impact the structure and function of ecosystems. Shoot density, morphometry and productivity of the seagrass Posidonia oceanica to temperature variation was quantified at eight locations in Sardinia (western Mediterranean Sea) along a natural sea surface temperature (SST) gradient. The locations are spanned for a narrow range of latitude (1.5°), allowing the minimization of the effect of eventual photoperiod variability. Mean SST predicted P. oceanica meadow structure, with increased temperature correlated with higher shoot density, but lower leaf and rhizome width, and rhizome biomass. Chlorophyll a (Chl-a) strongly impacted seagrass traits independent of SST. Disentangling the effects of SST and Chl-a on seagrass meadow shoot density revealed that they work independently, but in the same direction with potential synergism. Space-for-time substitution predicts that global warming will trigger denser seagrass meadows with slender shoots, fewer leaves, and strongly impact seagrass ecosystem. Future investigations should evaluate if global warming will erode the ecosystem services provided by seagrass meadows.
In this work, the consequences of a local gorgonian coral mortality on the whole coralligenous assemblage were studied. A Before/After-Control/Impact sampling design was used: the structure of the coralligenous assemblage was compared before and after the gorgonian mortality event at the mortality site and two control sites. At the mortality site, a relevant decrease in alpha and beta diversity occurred, with a shift from a stratified assemblage characterized by gorgonians and other invertebrates to an assemblage dominated by algal turfs; conversely, neither significant variations of the structure nor decrease in biodiversity were observed at the control sites. The assemblage shift involved the main taxa in different times: in autumn 2018, a large proportion of the plexaurid coral Paramuricea clavata died, but no significant changes were observed in the structure of the remaining assemblage. Then, in autumn 2019, algal turfs increased significantly and, one year later, the abundance of the gorgonian Eunicella cavolini and bryozoans collapsed. Although the mechanisms of the assemblage shift following gorgonian loss will remain uncertain and a cause-effect relationship cannot be derived, results suggest the need for detecting signs of gorgonian forests stress in monitoring programs, which should be considered early indicators of their condition. in the coralligenous monitoring programs for detecting any sign of gorgonian forests stress which should be considered an early indicator of the assemblage condition.
Marine heat waves (MHWs), prolonged discrete anomalously warm water events, have been increasing significantly in duration, intensity and frequency all over the world, and have been associated with a variety of impacts including alteration of ecosystem structure and function. This study assessed the effects of current and future MHWs on the Mediterranean seagrass Posidonia oceanica performance, also testing the importance of the thermal environment where the plant lives. The effects of current MHWs were studied through a mensurative experiment in a cold and in a warm site (West and North-West Sardinia, Italy, respectively). Future MHWs effects were tested through a manipulative experiment using P. oceanica shoots collected from the cold and warm sites and transplanted in a common garden in front of a power plant (North-West Sardinia): here plants were exposed to heat longer in duration and stronger in intensity than the natural MHWs of the last 20 years, resembling the future scenario. Morphological (total # of leaves, maximum leaf length, and percentage of total necrotic leaf length per shoot) and biochemical variables (leaf proteins, carbohydrates, and lipids) were considered. Plants had similar sublethal responses in both the experiments for most of the variables, revealing that current and future MHWs had similar effect types, but different in magnitude depending on the intensity of the waves: in general, the number of leaves, the maximum leaf length and lipid content decreased, while the leaf necrosis and carbohydrates increased. However, also the origin of the plants affected the results, corroborating the hypothesis that the thermal context the plants live affects their tolerance to the heat. Overall, this study provided evidence about the importance of biochemical variations, such as carbohydrate and lipid levels, as potentially good indicators of seagrass heat stress.
Predicting community-level responses to seawater warming is a pressing goal of global change ecologists. How far such predictions can be derived from a fine gradient of thermal environments needs to be explored, even if ignoring water climatology does not allow estimating subtidal marine heat waves. In this study insights about the influence of the thermal environment on the coralligenous community structure were gained by considering sites (Sardinia, Italy) at different temperature conditions. Heating events were measured (by loggers at 18 m, 23 m, 28 m, 33 m and 38 m deep) and proxies for their duration (the maximum duration of events warmer than the 90th percentile temperature), intensity (the median temperature) and variability (the number of daily ΔT larger than the mean daily ΔT, and the number of heating events larger in ΔT than the 90th percentile ΔT) were selected by GAM models. Reliable predictions of decrease in coralligenous richness of taxa/morphological groups, with relevant increment in turfs and encrusting coralline algae abundance at the expenses of bryozoans were made. Associations to the different types of heating descriptor have highlighted the aspect (intensity, duration or variability) of the heating events and the threshold for each of them responsible for the trajectories of change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.