This paper presents simplified closed-form analytical solutions that can be used to interpret and predict ground movements caused by shallow tunneling in soft ground conditions. These solutions offer a more comprehensive framework for understanding the distribution of ground movements than widely used empirical functions. Analytical solutions for the displacement field within the ground mass are obtained for two basic modes of deformation corresponding to uniform convergence and ovalization at the wall of a circular tunnel cavity, based on the assumption of linear, elastic soil behavior. Deformation fields based on the superposition of fundamental, singularity solutions are shown to differ only slightly from analyses that consider the physical dimensions of the tunnel cavity, except in the case of very shallow tunnels. The Authors demonstrate a simplified method to account for soil plasticity in the analyses and illustrate closed-form solutions for a three-dimensional tunnel heading. A companion paper describes applications of these analyses to interpret field measurements of ground response to tunneling.
This paper presents a numerical formulation of a three dimensional embedded beam element for the modeling of piles, which incorporates an explicit interaction surface between soil and pile. The formulation is herein implemented for lateral loading of piles but is able to represent soil-pile interaction phenomena in a general manner for different types of loading conditions or ground movements. The model assumes perfect adherence between beam and soil along the interaction surface. The paper presents a comparison of the results obtained by means of the present formulation and by means of a previously formulated embedded pile element without interaction surface, as well as reference semi-analytical solutions and a fully 3D finite element (FE) model. It is seen that the proposed embedded element provides a better convergence behavior than a previously formulated embedded element and is able to reproduce key features of a full 3D FE model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.