In this work, a novel representation system for symbolic music is described. The proposed representation system is graph-based and could theoretically represent music both from a horizontal (contrapuntal) and from a vertical (harmonic) point of view, by keeping into account contextual and harmonic information. It could also include relationships between internal variations of motifs and themes. This is achieved by gradually simplifying the melodies and generating layers of reductions that include only the most important notes from a structural and harmonic viewpoint. This representation system has been tested in a music information retrieval task, namely melodic similarity, and compared to another system that performs the same task but does not consider any contextual or harmonic information, showing how the structural information is needed in order to find certain relations between musical pieces. Moreover, a new dataset consisting of more than 5000 leadsheets is presented, with additional meta-musical information taken from different web databases, including author, year of first performance, lyrics, genre and stylistic tags.
CCS CONCEPTS• Information systems → Music retrieval; • Applied computing → Sound and music computing;
Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, midlevel representations, motion and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval, and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.