During 2015, the influence of kaolin applications and bunch-zone leaf removal on the grapevine leafhoppers, Empoasca vitis (Göthe) and Zygina rhamni Ferrari, and their egg parasitoids (Anagrus spp.) was tested in four vineyards of northeastern Italy. The mode of action of kaolin on E. vitis nymphs was also investigated in the laboratory. In the treated plots, kaolin was applied at a rate of 2% w/v on two occasions separated by 5-6 d. In two vineyards, it was applied either on the whole canopy or the bunch zone at the beginning of the E. vitis second generation (preventive criterion), and in the other two vineyards, it was applied to the whole canopy at the peak of the E. vitis third generation (curative criterion). Both the preventive and curative kaolin applications caused a significant decrease in the populations of E. vitis and Z. rhamni nymphs. The effect of the preventive applications was persistent and was associated with reduced E. vitis leaf symptoms. Kaolin did not influence the activity of Anagrus spp. Bunch-zone leaf removal did not affect leafhopper populations. Laboratory experiments showed that inhibition of feeding was the main mode of action through which kaolin affected nymph populations. Based on these outcomes, kaolin could be a valuable alternative to synthetic insecticides in controlling grapevine leafhoppers.
The leafhopper Scaphoideus titanus is the vector of ‘Candidatus Phytoplasma vitis’, the causal agent of Flavescence dorée (FD) a key disease for European viticulture. In organic vineyards, the control of S. titanus relies mostly on the use of pyrethrins that have suboptimal efficacy. During 2016, three field trials were conducted to evaluate the efficacy of kaolin, orange oil, insecticidal soap and spinosad against S. titanus nymphs, in comparison with pyrethrins. The activity of kaolin was evaluated also in the laboratory. In all field trials, kaolin had an efficacy against nymphs comparable to pyrethrins, while the other products were not effective. Laboratory results confirmed that kaolin increased nymph mortality. In organic vineyards, kaolin and pyrethrins are valuable tools in the management of FD. Nevertheless, their efficacy is lower compared to that of the synthetic insecticides used in conventional viticulture. Therefore, further research should be conducted in order to identify alternatives to synthetic insecticides for S. titanus control in the context of organic viticulture.
To reduce the impact of synthetic insecticides on human health and the environment, eco-friendly alternatives must be investigated. Knowledge of the side effects on pests and natural enemies of natural products applied to vineyards is very useful. Sulfur dust, which is used in vineyards to control powdery mildew, is investigated in laboratory and field bioassays for its effects on Lobesia botrana egg laying, egg hatching, and larval settlement. In field trials, the efficacy of sulfur dust against the two L. botrana carpophagous generations is compared with that of Bacillus thuringiensis and kaolin, and its side effects on the phytoseiid mite Kampimodromus aberrans are evaluated. In the bioassays, sulfur dust reduced female survival by 43%, egg laying by around 80%, egg hatching by 10%, and larval settlement by 55%. In field trials, sulfur dust caused a significant decrease in the number of L. botrana larval nests of both generations, even though the efficacy was lower than that of B. thuringiensis. No negative effects of sulfur dust on the predatory mite population density was observed. On the basis of these results, in the context of Integrated Pest Management strategies in vineyards, the activity of sulfur dust against L. botrana could be exploited by timing its application to the beginning of egg laying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.