Dual-tasking charges the sensorimotor system with performing two tasks simultaneously. Center of pressure (COP) analysis reveals the postural control that is altered during dual-tasking, but may not reveal the underlying neural mechanisms. In the current study, we hypothesized that the minimal intervention principle (MIP) provides a concept by which dual-tasking effects on the organization and prioritization of postural control can be predicted. Postural movements of 23 adolescents (age 12.7 ± 1.3; 8 females) and 15 adults (26.9 ± 2.3) were measured in a bipedal stance with eyes open, eyes closed and eyes open while performing a dual-task using a force plate and 39 reflective markers. COP data was analyzed by calculating the mean velocity, standard deviation and amplitude of displacement. Kinematic data was examined by performing a principal component analysis (PCA) and extracting postural movement components. Two variables were determined to investigate changes in amplitude (aVark) and in control (Nk) of the principal movement components. Results in aVark and in Nk agreed well with the predicted dual-tasking effects. Thus, the current study corroborates the notion that the MIP should be considered when investigating postural control under dual-tasking conditions.
A phenomenon called adolescent awkwardness is believed to alter motor control, but underlying mechanisms remain largely unclear. Since adolescents undergo neurological and anthropometrical changes during this developmental phase, we hypothesized that adolescents control their movements less tightly and use a different coordinative structure compared to adults. Moreover, we tested if emerging differences were driven by body height alterations between age groups. Using 39 reflective markers, postural movements during tandem stance with eyes open and eyes closed of 12 adolescents (height 168.1 ± 8.8 cm) and 14 adults were measured, in which 9 adults were smaller or equal than 180 cm (177.9 ± 3.0 cm) and 5 taller or equal than 190 cm (192.0 ± 2.5 cm). A principal component analysis (PCA) was used to extract the first nine principal movement components (PMk). The contribution of each PMk to the overall balancing movement was determined according to their relative variance share (rVARk) and tightness of motor control was examined using the number of times that the acceleration of each PMk changed direction (Nk). Results in rVARk did not show significant differences in coordinative structure between adolescents and adults, but Nk revealed that adolescents seem to control their movements less tightly in higher-order PMk, arguably due to slower processing times and missing automatization of postural control or potential increases in exploration. Body height was found to not cause motor control differences between age groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.