In the last few years interest in versatile reconfigurable arrays for space applications has been growing and several concepts tailored for different mission needs have been proposed. Nevertheless, a compelling application that justifies their higher cost and complexity with respect to conventional systems has not yet been found. Here a novel approach to the design of an Attitude Control System (ACS) for small reconfigurable spacecraft is proposed. It shall exploit momentum-preserving internal torques generated by the modules of the multibody array rotating relative to each other. The goal is to achieve better performance in efficiency, accuracy and robustness with respect to state-of-the-art ACSs, which is a bottleneck of small spacecraft technology. This paper investigates the characteristic behaviour of a planar multibody array whose attitude is controlled using internal joint torques. To do this, relevant reorientation trajectories are shown and discussed. With respect to previous work in the field, optimal attitude control trajectories that take into account module impingement are discussed and the dynamics of momentum-preserving manoeuvres is explained in detail from both physical and mathematical points of view. The results demonstrate that further development of the concept is desirable.
The European Union H2020 EFESTO project is coordinated by DEIMOS Space with the end goals of improving the European TRL of Inflatable Heat Shields for re-entry vehicles (from 3 to 4/5) and paving the way towards further improvements (TRL 6 with a future In-Orbit Demonstrator). This paper presents the project objectives and provides with a general overview of the activities ongoing and planned for the next two years, promoting its position in the frame of a European re-entry technology roadmap. EFESTO aims at (1) the definition of critical space mission scenarios (Earth and Mars applications) enabled by the use of advanced inflatable Thermal Protection Systems (TPS), (2) characterization of the operative environment and (3) validation by tests of both the flexible materials needed for the thermal protection (flexible thermal blanket will be tested in arcjet facility in both Earth and Martian environments) and the inflatable structure at 1:2 scale (exploring the morphing dynamics and materials response from packed to fully inflated configuration). These results will be injected into the consolidated design of a future In-Orbit Demonstrator (IOD) mission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.