We propose a multivariate approach for the estimation of intergenerational transition matrices. Our methodology is grounded on the assumption that individuals’ social status is unobservable and must be estimated. In this framework, parents and offspring are clustered on the basis of the observed levels of income and occupational categories, thus avoiding any discretionary rule in the definition of class boundaries. The resulting transition matrix is a function of the posterior probabilities of parents and young adults of belonging to each class. Estimation is carried out via maximum likelihood by means of an expectation-maximization algorithm. We illustrate the proposed method using National Longitudinal Survey Data from the United States in the period 1978-2006.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.