We investigate, by an extensive quality evaluation approach, performances and potential side effects introduced in Computed Tomography (CT) images by Deep Learning (DL) processing. Method: We selected two relevant processing steps, denoise and segmentation, implemented by two Convolutional Neural Networks (CNNs) models based on autoencoder architecture (encoder-decoder and UNet) and trained for the two tasks. In order to limit the number of uncontrolled variables, we designed a phantom containing cylindrical inserts of different sizes, filled with iodinated contrast media. A large CT image dataset was collected at different acquisition settings and two reconstruction algorithms. We characterized the CNNs behavior using metrics from the signal detection theory, radiological and conventional image quality parameters, and finally unconventional radiomic features analysis. Results: The UNet, due to the deeper architecture complexity, outperformed the shallower encoder-decoder in terms of conventional quality parameters and preserved spatial resolution. We also studied how the CNNs modify the noise texture by using radiomic analysis, identifying sensitive and insensitive features to the denoise processing. Conclusions: The proposed evaluation approach proved effective to accurately analyze and quantify the differences in CNNs behavior, in particular with regard to the alterations introduced in the processed images. Our results suggest that even a deeper and more complex network, which achieves good performances, is not necessarily a better network because it can modify texture features in an unwanted way.
. Purpose The aim of this work is the development and characterization of a model observer (MO) based on convolutional neural networks (CNNs), trained to mimic human observers in image evaluation in terms of detection and localization of low-contrast objects in CT scans acquired on a reference phantom. The final goal is automatic image quality evaluation and CT protocol optimization to fulfill the ALARA principle. Approach Preliminary work was carried out to collect localization confidence ratings of human observers for signal presence/absence from a dataset of 30,000 CT images acquired on a PolyMethyl MethAcrylate phantom containing inserts filled with iodinated contrast media at different concentrations. The collected data were used to generate the labels for the training of the artificial neural networks. We developed and compared two CNN architectures based respectively on Unet and MobileNetV2, specifically adapted to achieve the double tasks of classification and localization. The CNN evaluation was performed by computing the area under localization-ROC curve (LAUC) and accuracy metrics on the test dataset. Results The mean of absolute percentage error between the LAUC of the human observer and MO was found to be below 5% for the most significative test data subsets. An elevated inter-rater agreement was achieved in terms of S-statistics and other common statistical indices. Conclusions Very good agreement was measured between the human observer and MO, as well as between the performance of the two algorithms. Therefore, this work is highly supportive of the feasibility of employing CNN-MO combined with a specifically designed phantom for CT protocol optimization programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.