The novel zinc(II) µ-oxo-bridged-dimeric complex [Zn2(µ-O)2(BMIP)2] (BMIP = 1,3-bis(5-methoxy-1-methyl-1H-indol-3-yl)propane-1,3-dione), 1, was synthetized and fully characterized. The spectral data indicate a zincoxane molecular structure, with the BMIP ligand coordinating in its neutral form via its oxygen atoms. Structural changes in 1 in dimethylsulfoxide (DMSO) were evidenced by means of spectroscopic techniques including infrared absorption and nuclear magnetic resonance, showing DMSO entrance in the coordination sphere of the metal ion. The resulting complex [Zn2(µ-O)2(BMIP)2(DMSO)], 2, readily reacts in the presence of N-methyl-imidazole (NMI), a liquid-phase nucleoside mimic, to form [Zn2(µ-O)2(BMIP)2(NMI)], 3, through DMSO displacement. The three complexes show high thermal stability, demonstrating that 1 has high affinity for hard nucleophiles. Finally, with the aim of probing the suitability of this system as model scaffold for new potential anticancer metallodrugs, the interactions of 1 with calf thymus DNA were investigated in vitro in pseudo-physiological environment through UV-Vis absorption and fluorescence emission spectroscopy, as well as time-resolved fluorescence studies. The latter analyses revealed that [Zn2(µ-O)2(BMIP)2(DMSO)] binds to DNA with high affinity upon DMSO displacement, opening new perspectives for the development of optimized drug substances.
An uncatalyzed and easily accessible synthetic approach for the preparation of 3-aroylindoles was investigated using nitrosoarenes and aromatic terminal ethynyl ketones. Indole derivatives were produced in good yields and excellent regioselectivity. Functionalizations of the indole products were carried out affording highly valuable and versatile compounds. The indolization protocol was studied as a fundamental step for the preparation of pravadoline and 1-butyl-3-(1-naphthoyl)indole (JWH-073), bioactive molecules showing antinociceptic properties.
We report a simple and efficient strategy to enhance the fluorescence of biocompatible biindole diketonates (bdks) in the visible spectrum through difluoroboronation (BF2bdks complexes). Emission spectroscopy testifies an increase in the fluorescence quantum yields from a few percent to as much as >0.7. This massive increment is essentially independent of substitutions at the indole (-H, -Cl, and -OCH3) and corresponds to a significant stabilization of the excited state with respect to non-radiative decay mechanisms: the non-radiative decay rates are reduced by as much as an order of magnitude, from 109 s−1 to 108 s−1, upon difluoroboronation. The stabilization of the excited state is large enough to enable sizeable 1O2 photosensitized production. Different time-dependent (TD) density functional theory (DFT) methods were assessed in their ability to model the electronic properties of the compounds, with TD-B3LYP-D3 providing the most accurate excitation energies. The calculations associate the first active optical transition in both the bdks and BF2bdks electronic spectra to the S0 → S1 transition, corresponding to a shift in the electronic density from the indoles to the oxygens or the O-BF2-O unit, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.