We have reviewed and assessed the reliability of a dead reckoning and drift correction algorithm for the estimation of spatial gait parameters using Inertial Measurement Units (IMUs). In particular, we are interested in obtaining accurate stride lengths measurements in order to assess the effects of a wearable haptic cueing device designed to assist people with neurological health conditions during gait rehabilitation. To assess the accuracy of the stride lengths estimates, we compared the output of the algorithm with measurements obtained using a high-end marker-based motion capture system, here adopted as a gold standard. In addition, we introduce an alternative method for detecting initial impact events (i.e. the instants at which one foot contacts the ground, here used for delimiting strides) using accelerometer data. Our method, based on a kinematic feature we named 'jerkage', has proved more robust than detecting peaks on raw accelerometer data. We argue that the resulting measurements of stride lengths are accurate enough to provide trend data needed to support worthwhile gait rehabilitation applications. This approach has potential to assist physiotherapists and patients without access to fully-equipped movement labs. More specifically, it has applications for collecting data to guide and assess gait rehabilitation both outdoors and at home.
The Global Hyperorgan is an intercontinental, creative space for acoustic musicking.Existing pipe organs around the world are networked for real-time, geographicallydistant performance, with performers utilizing instruments and other input devices to collaborate musically through the voices of the pipes in each location. A pilot study was carried out in January 2021, connecting two large pipe organs in Piteå, Sweden, and Amsterdam, the Netherlands. A quartet of performers tested the Global Hyperorgan's capacities for telematic musicking through a series of pieces. The concept of modularity is useful when considering the artistic challenges and possibilities of the Global Hyperorgan. We observe how the modular system utilized in the pilot study afforded multiple experiences of shared instrumentality from which new, synthetic voices emerge. As a long-term technological, artistic and social research project, the Global Hyperorgan offers a platform for exploring technology, agency, voice, and intersubjectivity in hyper-acoustic telematic musicking.
Musical performance is a multimodal experience, for performers and listeners alike. This paper reports on a pilot study which constitutes the first step toward a comprehensive approach to the experience of music as performed. We aim at bridging the gap between qualitative and quantitative approaches, by combining methods for data collection. The purpose is to build a data corpus containing multimodal measures linked to high-level subjective observations. This will allow for a systematic inclusion of the knowledge of music professionals in an analytic framework, which synthesizes methods across established research disciplines. We outline the methods we are currently developing for the creation of a multimodal data corpus dedicated to the analysis and exploration of instrumental music performance from the perspective of embodied music cognition. This will enable the study of the multiple facets of instrumental music performance in great detail, as well as lead to the development of music creation techniques that take advantage of the cross-modal relationships and higher-level qualities emerging from the analysis of this multi-layered, multimodal corpus. The results of the pilot project suggest that qualitative analysis through stimulated recall is an efficient method for generating higher-level understandings of musical performance. Furthermore, the results indicate several directions for further development, regarding observational movement analysis, and computational analysis of coarticulation, chunking, and movement qualities in musical performance. We argue that the development of methods for combining qualitative and quantitative data are required to fully understand expressive musical performance, especially in a broader scenario in which arts, humanities, and science are increasingly entangled. The future work in the project will therefore entail an increasingly multimodal analysis, aiming to become as holistic as is music in performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.