We propose and analyze a seamless extended Discontinuous Galerkin (DG) discretization of advection-diffusion equations on semi-infinite domains. The semi-infinite half line is split into a finite subdomain where the model uses a standard polynomial basis, and a semiunbounded subdomain where scaled Laguerre functions are employed as basis and test functions. Numerical fluxes enable the coupling at the interface between the two subdomains in the same way as standard single domain DG interelement fluxes. A novel linear analysis on the extended DG model yields unconditional stability with respect to the Péclet number. Errors due to the use of different sets of basis functions on different portions of the domain are negligible, as highlighted in numerical experiments with the linear advection-diffusion and viscous Burgers' equations. With an added damping term on the semi-infinite subdomain, the extended framework is able to efficiently simulate absorbing boundary conditions without additional conditions at the interface. A few modes in the semi-infinite subdomain are found to suffice to deal with outgoing single wave and wave train signals more accurately than standard approaches at a given computational cost, thus providing an appealing model for fluid flow simulations in unbounded regions.
This work proposes a hyper-reduction method for nonlinear parametric dynamical systems characterized by gradient fields such as (port-)Hamiltonian systems and gradient flows. The gradient structure is associated with conservation of invariants or with dissipation and hence plays a crucial role in the description of the physical properties of the system. Traditional hyper-reduction of nonlinear gradient fields yields efficient approximations that, however, lack the gradient structure. We focus on Hamiltonian gradients and we propose to first decompose the nonlinear part of the Hamiltonian, mapped into a suitable reduced space, into the sum of d terms, each characterized by a sparse dependence on the system state. Then, the hyperreduced approximation is obtained via discrete empirical interpolation (DEIM) of the Jacobian of the derived d-valued nonlinear function. The resulting hyper-reduced model retains the gradient structure and its computationally complexity is independent of the size of the full model. Moreover, a priori error estimates show that the hyper-reduced model converges to the reduced model and the Hamiltonian is asymptotically preserved. Whenever the nonlinear Hamiltonian gradient is not globally reducible, i.e. its evolution requires high-dimensional DEIM approximation spaces, an adaptive strategy is performed. This consists in updating the hyperreduced Hamiltonian via a low-rank correction of the DEIM basis. Numerical tests demonstrate the applicability of the proposed approach to general nonlinear operators and runtime speedups compared to the full and the reduced models.
We propose and analyze a seamless extended Discontinuous Galerkin (DG) discretization of hyperbolic-parabolic equations on semiinfinite domains. The semi-infinite half line is split into a finite subdomain where the model uses a standard polynomial basis, and a semi-unbounded subdomain where scaled Laguerre functions are employed as basis and test functions. Numerical fluxes enable the coupling at the interface between the two subdomains in the same way as standard single domain DG interelement fluxes. A novel linear analysis on the extended DG model yields stability constraints on the finite subdomain grid size that get tighter for increasing values of the Péclet number. Errors due to the use of different sets of basis functions on different portions of the domain are negligible, as highlighted in numerical experiments with the linear advectiondiffusion and viscous Burgers' equations. With an added damping term on the semi-infinite subdomain, the extended framework is able to efficiently simulate absorbing boundary conditions without additional conditions at the interface. A few modes in the semi-infinite subdomain are found to suffice to deal with outgoing single wave and wave train signals, thus providing an appealing model for fluid flow simulations in unbounded regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.