Figure 1. Dyadic projected spatial augmented reality enables two users to interact with a shared virtual scene and each other in a face to face arrangement. Center: Room geometry, user geometry and projector camera pairs are illustrated. Virtual 1 & 2: The desired view for each user is rendered offscreen. ProCam 0, 1 & 2: Projected graphics are warped to account for surface geometry, including the other user. Real 1 & 2: Each user's resulting view compares well with the desired view (Virtual 1 & 2). ABSTRACTMano-a-Mano is a unique spatial augmented reality system that combines dynamic projection mapping, multiple perspective views and device-less interaction to support face to face, or dyadic, interaction with 3D virtual objects. Its main advantage over more traditional AR approaches, such as handheld devices with composited graphics or seethrough head worn displays, is that users are able to interact with 3D virtual objects and each other without cumbersome devices that obstruct face to face interaction. We detail our prototype system and a number of interactive experiences. We present an initial user experiment that shows that participants are able to deduce the size and distance of a virtual projected object. A second experiment shows that participants are able to infer which of a number of targets the other user indicates by pointing.
“High‐altitude Andean Lakes” (HAAL) are pristine environments harboring poly‐extremophilic microbes that show combined adaptations to physical and chemical stress such as large daily ambient thermal amplitude, extreme solar radiation levels, intense dryness, alkalinity, high concentrations of arsenic (up to 200 ppm) and dissolved salts. In this work, we compared the UV resistance profiles, pigment content and photoreactivation abilities of three UV‐resistant bacteria isolated from distinct niches from HAALs, that is Acinetobacter sp. Ver3 (water, Lake Verde; 4400 m), Exiguobacterium sp. S17 (stromatolite, Lake Socompa, 3570 m) and Nesterenkonia sp. Act20 (soil, Lake Socompa, 3570 m). UV resistance ability of HAAL's strains indicate a clear adaptation to high radiation exposure encountered in their original habitat, which can be explained by genetic and physiological mechanisms named as the UV‐resistome. Thus, the UV‐resistome depends on the expression of a diverse set of genes devoted to evading or repairing the damage it provoked direct or indirectly. As pigment extraction and photoreactive assays indicate the presence of photoactive molecules, we characterized more in detail proteins with homology to photolyases/cryptochromes members (CPF). Phylogenetic analyses, sequence comparison and 3D modeling with bona fide CPF members were used to prove the presence of functional domains and key residues in the novel proteins.
High levels of arsenic present in the High Altitude Andean Lakes (HAALs) ecosystems selected arsenic-resistant microbial communities which are of novel interest to study adaptations mechanisms potentially useful in bioremediation processes. We herein performed a detailed characterization of the arsenic tolerance profiles and the biofilm production of two HAAL polyextremophiles, Acinetobacter sp. Ver3 (Ver3) and Exiguobacterium sp. S17 (S17). Cellular adherence over glass and polypropylene surfaces were evaluated together with the effect of increasing doses and oxidative states of arsenic over the quality and quantity of their biofilm production. The arsenic tolerance outcomes showed that HAAL strains could tolerate higher arsenic concentrations than phylogenetic related strains belonging to the German collection of microorganisms and cell cultures (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ), which suggest adaptations of HAAL strains to their original environment. On the other hand, the crystal violet method (CV) and SEM analysis showed that Ver3 and S17 were able to attach to solid surfaces and to form the biofilm. The quantification of biofilms production in 48 hours’ cultures through CV shows that Ver3 yielded higher production in the treatment without arsenic cultured on a glass support, while S17 yield higher biofilm production under intermediate arsenic concentration on glass supports. Polypropylene supports had negative effects on the biofilm production of Ver3 and S17. SEM analysis shows that the highest biofilm yields could be associated with a larger number of attached cells as well as the development of more complex 3D multicellular structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.