This report describes a plasmatic, fast-acting, specific inhibitor (antiactivator) of tissue-type plasminogen activator (t-PA) and urokinase (UK). After addition of t-PA to human plasma, biexponential decay of activity occurred. The initial rapid inhibition of t-PA activity (half-life of approximately one minute) was correlated with the formation of a complex of a molecular weight of 110,000, suggesting a molecular weight in the order of 40,000 for the antiactivator. Diisopropylfluorophosphate (DFP)-inactivated t-PA did not form complexes with antiactivator. The second-order rate constant for the interaction of t-PA with antiactivator is in the order of 10(7) mol/L-1 sec-1. In plasma, UK added at low concentrations rapidly formed complexes of a mol wt of 95,000. Preincubation of the plasma with t-PA prevented complex formation of UK, and vice versa, suggesting that the same inhibitor inactivates both t-PA and UK. After exhaustion of the antiactivator, t-PA and UK formed complexes with alpha 2-antiplasmin and C1′-inhibitor at a low rate.
High plasma levels of plasminogen activator inhibitor type-1 (PAI-1), the principal inhibitor of the fibrinolytic system, have been associated with thrombotic and arterial disease. To study PAI-1 expression in healthy and atherosclerotic human arteries, a detailed analysis was made by light and electron microscopy immunocytochemistry and by in situ hybridization. In healthy arteries PAI-1 was found both at the level of endothelial cells and of smooth muscle cells (SMCs) of the arterial media. In early atherosclerotic lesions PAI-1 was also detected in intimal SMCs and in extracellular areas in association with vitronectin. Immunogold analysis by electron microscopy revealed PAI-1 in vesicular structures in endothelial cells and in SMCs with normal or foam cell characteristics. In advanced atheromatous plaques, PAI-1 mRNA expression in SMCs within the fibrous cap was increased compared with SMCs located in the adjacent media or in normal arterial tissue. PAI-1 mRNA was also detected in macrophages located at the periphery of the necrotic core. The increased synthesis of PAI-1 by cellular components of the atherosclerotic plaque and the extracellular accumulation of PAI-1 may contribute to the thrombotic complications associated with plaque rupture and possibly play a role in the accumulation of extracellular matrix deposits.
The plasminogen activator (PA) system may participate in the pathogenesis of atherosclerosis by modulating the turnover of intimal fibrin and extracellular matrix deposits and by contributing to intimal cell migration. We present an analysis of tissue-type PA (tPA) and urokinase-type PA (uPA) expression at three levels: mRNA by in situ hybridization, antigen by immunohistochemistry, and enzymatic activity by histoenzymology and zymography. For PA colocalization with cellular or matrix components, we used double immunofluorescence labeling in conjunction with confocal microscopy. In normal arteries, tPA antigen and mRNA were detected in endothelial cells and smooth muscle cells (SMCs). In atherosclerotic arteries, tPA antigen and mRNA were increased in intimal SMCs and in macrophage-derived foam cells of fibro-fatty lesions. Part of the tPA was detected in the extracellular space and colocalized with fibrin deposits. uPA antigen and mRNA were detected in association with the intimal macrophages and SMCs. A particularly high uPA expression was noted on macrophages localized on the rims of the necrotic core. Moreover, using a novel histoenzymological assay as well as classic zymography, we revealed uPA-dependent lytic activity in the advanced lesions, whereas in normal arteries, only tPA-dependent activity was detected, mainly over the vasa vasorum. Also, strong tPA and uPA staining was detected in neomicrovessels of the plaques, suggesting that PAs may play a role in plaque angiogenesis. Our results suggest a local dynamic process of PA-dependent proteolysis in lesion areas that is associated with macrophages and SMCs. A better comprehension of these proteolytic mechanisms in advanced atherosclerotic plaques may provide the basis for therapeutic approaches for plaque stabilization.
Oral anticoagulants are a mainstay of cardiovascular therapy, and for over 60 years vitamin K antagonists (VKAs) were the only available agents for long-term use. VKAs interfere with the cyclic inter-conversion of vitamin K and its 2,3 epoxide, thus inhibiting γ-carboxylation of glutamate residues at the amino-termini of vitamin K-dependent proteins, including the coagulation factors (F) II (prothrombin), VII, IX and X, as well as of the anticoagulant proteins C, S and Z. The overall effect of such interference is a dose-dependent anticoagulant effect, which has been therapeutically exploited in heart disease since the early 1950s. In this position paper, we review the mechanisms of action, pharmacological properties and side effects of VKAs, which are used in the management of cardiovascular diseases, including coronary heart disease (where their use is limited), stroke prevention in atrial fibrillation, heart valves and/or chronic heart failure. Using an evidence-based approach, we describe the results of completed clinical trials, highlight areas of uncertainty, and recommend therapeutic options for specific disorders. Although VKAs are being increasingly replaced in most patients with non-valvular atrial fibrillation by the new oral anticoagulants, which target either thrombin or FXa, the VKAs remain the agents of choice for patients with atrial fibrillation in the setting of rheumatic valvular disease and for those with mechanical heart valves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.