The human gut microbiome is a complex ecosystem that both affects and is affected by its host status. Previous metagenomic analyses of gut microflora revealed associations between specific microbes and host age. Nonetheless there was no reliable way to tell a host's age based on the gut community composition.Here we developed a method of predicting hosts' age based on microflora taxonomic profiles using a cross-study dataset and deep learning. Our best model has an architecture of a deep neural network that achieves the mean absolute error of 5.91 years when tested on external data. We further advance a procedure for inferring the role of particular microbes during human aging and defining them as potential aging biomarkers. The described intestinal clock represents a unique quantitative model of gut microflora aging and provides a starting point for building host aging and gut community succession into a single narrative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.