Íàöèîíàëüíûé èññëåäîâàòåëüñêèé Ìîñêîâñêèé ãîñóäàðñòâåííûé ñòðîèòåëüíûé óíèâåðñèòåò (Ðîññèÿ, 129337, ã. Ìîñêâà, ßðîñëàâñêîå øîññå, 26) ÐÅÇÞÌÅ Ââåäåíèå. Çíà÷èìîé ïðîáëåìîé â îáëàñòè ñòðîèòåëüñòâà â Ðîññèéñêîé Ôåäåðàöèè ÿâëÿåòñÿ íåâîçìîaeíîñòü âîçâåäåíèÿ âûñîòíûõ äåðåâÿííûõ îáúåêòîâ. Äëÿ ðåøåíèÿ äàííîé ïðîáëåìû íåîáõîäèìî èçó÷èòü ñîñòîÿíèå âîïðîñà çà ðóáåaeîì è â Ðîññèéñêîé Ôåäåðàöèè è ïðîàíàëèçèðîâàòü ïåðñïåêòèâû ðàçâèòèÿ ýòîãî íàïðàâëåíèÿ. Îñíîâíàÿ (àíàëèòè÷åñêàÿ) ÷àñòü.  ñòàòüå ïðèâåäåíû ïðèìåðû âîçâåäåíèÿ ñîâðåìåííûõ îáúåêòîâ (â Áåðëèíå, Ëîíäîíå, Ìåëüáóðíå è äðóãèõ ãîðîäàõ), îòðàaeàþùèå ñîñòîÿíèå âûñîòíîãî äåðåâÿííîãî ñòðîèòåëüñòâà çà ðóáåaeîì.  ðàññìîòðåííûõ çäàíèÿõ ñîâìåñòíî ñ ïðåîáëàäàþùèìè äåðåâÿííûìè êîíñòðóêòèâíûìè è äåðåâîñîäåðaeàùèìè îòäåëî÷íûìè ìàòåðèàëàìè èñïîëüçîâàíû aeåëåçîáåòîííûå êîíñòðóêòèâíûå ýëåìåíòû, íåîáõîäèìûå äëÿ ðåàëèçàöèè ñëîaeíûõ òåõíè÷åñêèõ ñèñòåì, ÷òî ïîçâîëÿåò çíà÷èòåëüíî ñîêðàòèòü ñðîêè èõ âîçâåäåíèÿ. Êðîìå òîãî, âûáðàííûé ïîäõîä ïîçâîëÿåò îáåñïå÷èòü çíà÷èòåëüíóþ ýêîëîãè÷íîñòü çäàíèé è ñîîðóaeåíèé: áëàãîäàðÿ èñïîëüçîâàíèþ äåðåâîñîäåðaeàùèõ ìàòåðèàëîâ êîíñåðâèðóþòñÿ îãðîìíûå îáúåìû óãëåêèñëîòû è çíà÷èòåëüíî ñíèaeàþòñÿ åå âûáðîñû â àòìîñôåðó âî âðåìÿ ñòðîèòåëüíûõ ðàáîò.  ðàáîòå îòðàaeåíû îñíîâíûå ïîëîaeåíèÿ òåõíè÷åñêîãî ðåãóëèðîâàíèÿ â îáëàñòè íîðìèðîâàíèÿ ïîaeàðíîé áåçîïàñíîñòè ñòðîèòåëüíûõ ìàòåðèàëîâ è êîíñòðóêöèé â Ðîññèéñêîé Ôåäåðàöèè. Ïîêàçàíî, ÷òî îñíîâíûå ïðè÷èíû íåâîçìîaeíîñòè èñïîëüçîâàíèÿ äåðåâÿííûõ êîíñòðóêöèé â âûñîòíûõ çäàíèÿõ ñâÿçàíû ñ îñîáåííîñòÿìè òåõíè÷åñêîãî ðåãóëèðîâàíèÿ â Ðîññèéñêîé Ôåäåðàöèè, â ÷àñòíîñòè ñ îòñóòñòâèåì íåîáõîäèìûõ ìåòîäèê äëÿ ïðîâåäåíèÿ èñïûòàíèé è ñåðòèôèêàöèè äåðåâîñîäåðaeàùèõ ñòðîèòåëüíûõ êîíñòðóêöèé â âûñîòíîì ñòðîèòåëüñòâå. Ïîêàçàíà íåîáõîäèìîñòü îïòèìèçàöèè ñóùåñòâóþùèõ ìåòîäîâ äëÿ èñïûòàíèÿ äåðåâÿííûõ ñòðîèòåëüíûõ êîíñòðóêöèé. Ïðèâåäåíû ïðèìåðû ðàçëè÷íûõ äîêóìåíòîâ, ðåãëàìåíòèðóþùèõ ïðîèçâîäñòâî è èñïîëüçîâàíèå äåðåâÿííûõ è êîìïîçèòíûõ ñòðîèòåëüíûõ êîíñòðóêöèé.  ðàáîòå äåòàëüíî îòðàaeåí ìåaeäóíàðîäíûé îïûò ðåàëèçàöèè îñíîâíûõ ïîëîaeåíèé íîðìàòèâíûõ äîêóìåíòîâ, à òàêaeå åâðîïåéñêèå èñïûòàíèÿ íà îãíåñòîéêîñòü, ÷òî ïîêàçûâàåò âîçìîaeíîñòü ðåàëèçàöèè ïîäîáíîãî îïûòà â Ðîññèéñêîé Ôåäåðàöèè. Âûâîäû. Äëÿ ðàçðàáîòêè íîðìàòèâíîé îñíîâû äëÿ âîçìîaeíîñòè èñïîëüçîâàíèÿ êîíñòðóêöèé èç äðåâåñèíû â âûñîòíîì ñòðîèòåëüñòâå íåîáõîäèìî ïðîâåäåíèå êðóïíîìàñøòàáíûõ ýêñïåðèìåíòîâ íà äåðåâÿííûõ êîíñòðóêöèÿõ â öåëÿõ èçó÷åíèÿ èõ îãíåñòîéêîñòè. Ïðè ýòîì íåîáõîäèìî ó÷èòûâàòü îñîáåííîñòè ãîðþ÷èõ ñòðîèòåëüíûõ ìàòåðèàëîâ.Êëþ÷åâûå ñëîâà: íîðìèðîâàíèå â ñòðîèòåëüñòâå; êðóïíîìàñøòàáíûå îãíåâûå èñïûòàíèÿ; çàðóáåaeíûé îïûò; ïîaeàðíàÿ áåçîïàñíîñòü; ýêñïëóàòàöèîííûå õàðàêòåðèñòèêè êîíñòðóêöèé.Äëÿ öèòèðîâàíèÿ: Åðåìèíà Ò. Þ., Ïîðòíîâ Ô. À. Ïðîáëåìû è ïåðñïåêòèâû â îáëàñòè îãíåñòîéêîñòè äåðåâÿííûõ êîíñòðóêöèé äëÿ âûñîòíûõ çäàíèé // Ïîaeàðîâçðûâîáåçîïàñíîñòü/Fire and Explosion Safety. -2020. -Ò. 29, ¹ 2. -Ñ. 34-43.
Introduction. The author analyzes real-life fire resistance limits of metal structures for one building of a thermal power plant. Experimental and computational methods were applied to identify the fire resistance limits of building structures. The temperature setting of the research, conducted to solve the problem, was the same as that of a real fire.Research goal and objectives. The purpose of the analysis is to identify the fire resistance limits of structures comprising the building of a thermal power plant using the method of heat-mass exchange analysis that takes account of conditions of a real fire. The following objectives are to be attained in compliance with the pre-set goal:to analyze the principal provisions of technical norms and regulations in terms of the fire safety of building structures of thermal power plants;to justify the principal provisions for the method of heat-mass exchange analysis, taking into account real-life fire conditions;to justify the need to improve the real-life fire resistance limits by fire-proofing agents with account taken of the most dangerous scenario of the real fire development.Methods of research. The heat-transfer equation is analyzed to identify the distribution of temperatures inside a building structure for a one-dimensional case. The field-based method of analysis is applied to solve this problem. This method is generally applied to premises having complex geometric configuration, if one geometric dimension exceeds the others.Results and their discussion. The authors have analyzed the most dangerous fire scenario characterized by the most dangerous impact on metal structures, such as the furnace oil fire spill in a boiler room.The authors also address the most dangerous fire propagation scenario in terms of the heating of bearing metal structures: the combustion of furnace oil spills in a boiler room. The computations have proven that in case of the selected fire development scenario maximal temperatures of bearing metal structures are much lower than the critical temperature of 500 °С fifteen minutes after the onset of fire.Conclusions. Having analyzed the fire resistance computations of thermal power plant structures, including their metal constructions, the have found that in case of emergency, resistance to the most dangerous manifestations of fire exceeds the required R15 value. No fireproofing of bearing metal structures in the boiler room is needed.
In Russia, a large number of domestic and foreign fire-retardant materials are used to reduce fire danger when using metal and wooden structures in construction, as well as cable products. Regulatory instruments are used to assess these properties of fire-retardant materials, which do not allow for sufficient performance assessment. In this regard, the use of interdisciplinary research methods is proposed. The authors propose a wide range of research methods, as well as a methodological approach based on the separation of interdisciplinary methods into groups by scale of the research object (material). Based on the level-based division of the study, as well as an analysis of possible experimental methods at each level, it is proposed to optimize the study of the operational properties of building materials and fire retardants through the use of a compatibility chart. A practical example of how to use a compatibility chart is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.