An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible. SLAC-PUB-12162 Submitted to Applied Physics Letters 2Our understanding about dynamical processes in chemistry, materials science and biology on the picosecond and sub-picosecond time scale stems almost exclusively from time-resolved spectroscopy. Structural changes, on atomic length scales, can only be inferred indirectly from the analysis of spectra. Both x-ray and electron diffraction share the goal of 'imaging' molecular structures with a time resolution that captures the motions as systems evolve, whether they be solids, liquids or gases. Lab scale experiments in both electron diffraction 1,2 and x-ray scattering 3 have produced impressive results. Recently, in anticipation of the construction of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), an experiment using the electron bunch from the SLAC Linac to produce spontaneous undulator radiation 4 has shown the possibilities for ultrafast x-ray scattering from condensed systems with 100 fs time resolution. 5 This has encouraged us to approach ultrafast electron diffraction (UED) using experimental techniques based on electron sources developed for particle accelerators, with the aim of obtaining single-shot diffraction patterns on a 100 fs time scale.Electron diffraction is complementary to x-ray scattering, but features much larger cross sections that allow the study of surface phenomena, the bulk structures of thin foils and membranes, as well as molecular structures of gas phase samples. 6 As with linac based x-ray sources there has been significant development of electron sources for UED based on the use of photocathodes. 7 Unfortunately, the space-charge interactions of the electrons within a pulse, and the initial kinetic energy distribution with which the electrons are generated, have made it difficult to obtain pulses much shorter than 1 ps 8,9,10 ,in 'conventional' UED experiments using ≈30 keV electron beams. To improve the time resolution one could use fewer electrons per pulse, but that requires longer data acquisition times to obtain the necessary signal-to-noise ratio. 11 Alternatively, it is possible to increase the electric field inside the electron gun, while reducing the flight distance between the gun and the target. 12 Both tend to reduce the time of flight of the electron pulse, thereby giving the electron pulse less time to spread. Even so, this 3 approach is limited because the maximum DC and pulsed electric fields are 12 MV/m and 25 MV/m, respectively. 13,14 In the present work we take a fresh approach to ultrafast time-resolved pump-probe diffraction by using MeV electron be...
The early stages of the ring opening reaction of 1,3-cyclohexadiene to form its isomer 1,3,5-hexatriene, upon excitation to the ultrashort-lived 1 1B2 state, were explored. A series of one-color two-photon ionization/photoelectron spectra reveal a prominent vibrational progression with a frequency of 1350 cm(-1), which is interpreted in a dynamical picture as resulting from the ultrafast wave packet dynamics associated with the ring opening reaction. Photoionization in two-color three-photon and one-color four-photon ionization schemes show an ionization pathway via the same ultrashort-lived 1 1B2 state, and in addition, a series of Rydberg states with quantum defects of 0.93, 0.76, and 0.15, respectively. Using those Rydberg states as probes for the reaction dynamics in a time-resolved pump-probe experiment provides a direct observation of the elusive 2 1A1 state that has been implicated as an intermediate step between the initially excited 1 1B2 state and the ground electronic state. The rise and decay times for the 2 1A1 state were found to be 55 and 84 fs, respectively.
The energy flow and fragmentation dynamics of N,N-dimethylisopropylamine (DMIPA) upon excitation to the 3p Rydberg states has been investigated with use of time-resolved photoelectron and mass spectrometry. The 3p states are short-lived, with a lifetime of 701 +/- 45 fs. From the time dependence of the photoelectron spectra, we infer that the primary reaction channel leads to the 3s level, which itself decays to the ground state with a decay time of 87.9 +/- 10.2 ps. The mass spectrum reveals fragmentation with cleavage at the alpha C-C bond, indicating that the energy deposited in vibrations during the internal conversion from 3p to 3s exceeds the bond energy. A thorough examination of the binding energies and temporal dynamics of the Rydberg states, as well as a comparison to the related fragmentation of N,N-dimethyl-2-butanamine (DM2BA), suggests that the fragments are formed on the ion surfaces, i.e., after ionization and on a time scale much slower than the fluorescence decay from 3s to the ground state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.