Background: In order to identify genes that might confer and maintain freeze resistance of winter wheat, a comparative transcriptome analysis was performed between control and 4 wk coldacclimated crown tissue of two winter wheat lines that differ in field freeze survival. The lines, generated by azide mutagenesis of the winter wheat cultivar 'Winoka' were designated FR (75% survival) and FS (30% survival). Using two winter lines for this comparative analysis removed the influence of differential expression of the vernalization genes and allowed our study to focus on Cbf genes located within the Fr-A2 allele independent of the effect of the closely mapped Vrn allele.
Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K ϩ current (I Kin ) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K ϩ current (I Kout ). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I Kout was generated that displayed similar properties to I Kout observed from direct analysis of mesophyll cell protoplasts. I Kout expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K ϩ channel expressed in guard cells, resulted in I Kin that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I Kin that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K ϩ channels.
The level of expression of the group 3 late embryogenesis abundant abscisic acid-regulated gene (HVA1) to cold treatment has been studied in winter barley (Hordeum vulgare) seedling tissue. The cDNA clone (pHVA1) encoding this late embryogenesis abundant protein was used as a hybridization probe to detect the corresponding mRNA. Expression of the HVA1 gene was determined after the tissue had been subjected to a regimen of 2 degrees C exposure (cold acclimation), followed by a return to 25 degrees C growth conditions (deacclimation). Accumulation of HVA1 mRNA occurred upon cold acclimation of the tissue and disappeared as early as 2 hours after exposure to deacclimation conditions. A comparison of the response to cold acclimation and deacclimation was made between seedling tissue of a freeze-resistant and less freeze-resistant cultivar. In both cultivars, the HVA1 gene was expressed and modulated by cold treatment. Within 2 hours of deacclimation HVA1 mRNA was no longer detectable in either cultivar independently of freeze resistance. The level of expression of HVA1 appeared to be greater in the less freeze-resistant cultivar (Winter Malt).
Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold-acclimation-specific processes and pathways, we utilized cold acclimation transcriptomic data from two lines varying in freeze survival but not vernalization. These lines, designated freeze-resistant (FR) and freeze-susceptible (FS), were the source of crown tissue RNA. Well-annotated differentially expressed genes (p ≤ 0.005 and fold change ≥ 2 in response to 4 weeks cold acclimation) were used for gene ontology and pathway analysis. "Abiotic stimuli" was identified as the most enriched and unique for FR. Unique to FS was "cytoplasmic components." Pathway analysis revealed the "triacylglycerol degradation" pathway as significantly downregulated and common to both FR and FS. The most enriched of FR pathways was "neighbors of DREB2A," with the highest positive median fold change. The "13-LOX and 13-HPL" and the "E2F" pathways were enriched in FR only with a negative median fold change. The "jasmonic acid biosynthesis" pathway and four "photosynthetic-associated" pathways were enriched in both FR and FS but with a more negative median fold change in FR than in FS. A pathway unique to FS was "binding partners of LHCA1," which was enriched only in FS with a significant negative median fold change. We propose that the DREB2A, E2F, jasmonic acid biosynthesis, and photosynthetic pathways are critical for discrimination between cold-acclimated lines varying in freeze survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.